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Abstract: We examine specifications for dependence on the agent that performs them.  We 
look at the consequences for the Church-Turing Thesis and for the Halting Problem.

Introduction

The specifications considered in this paper are specifications of behavior, or activity.  I include 
human behavior, computer behavior, and other behavior.  To keep the examples simple, I will 
use specifications that say what the output, or final state, of the behavior should be.  And I will 
use specifications that relate input, or initial state, to output, or final state.  The conclusions 
apply also to specifications that say what the interactions during the behavior should be, but my 
examples will not be that complicated.  

A specification may have the form of a question, for example “What is two plus two?”.  Or it 
may have the form of a command, for example “Tell me what is two plus two.”.  The question 
and the command are equivalent because they invoke the same behavior.  A specification may 
describe the desired behavior, for example, “saying what is two plus two”.

Definitions

A specification is objective if the specified behavior does not vary depending on the agent that 
performs it.  For examples:
(0) Given a natural number, what is its square?
(1) What is the number of words in this question?
(2) What is the name of the first Turing Award winner?
For all three questions, the correct answer does not depend on who or what is answering.

A specification is subjective if the specified behavior varies depending on the agent that 
performs it.  For examples:
(3) What is your name?
(4) What is your IP address?
The correct answer to question (3) depends on whom you ask.  In this paper, “subjective” does 
not mean that the answer is a matter of disagreement, debate, doubt, or dishonesty.  If we ask 
Alice what her name is, the answer “Alice” is correct, and all other answers are wrong.  If we 
ask Bob the same question, the correct answer is different.  Question (4) is similar to question 
(3), but applies to a computer rather than a human.

Subjectively and Objectively Inconsistent

Now consider this example:
(5) Lift Bob.
I am not interested in the variety of lifting techniques;  I am interested only in the specified 
result:  the agent lifts Bob.  If we ask Hercules, who is very strong, to lift Bob, he can do so 
without difficulty.  If we ask Alice, who is much smaller than Bob, she is not strong enough.  
The result is different, depending on who is trying to lift Bob.  So it may seem that (5) is 
subjective.  But the definition of subjective specification says “the specified behavior varies 
depending on the agent”.  When we ask Alice to lift Bob, we are asking for the same behavior 
(lifting Bob) as when we ask Hercules.  So it may seem that (5) is objective.  But suppose we 
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ask Bob to lift Bob.  He cannot do so, but not due to lack of strength.  He cannot do so because 
the specification does not make sense when we ask Bob to lift himself.  The specification makes 
sense for some agent (anyone other than Bob), and makes no sense for some agent (Bob).  For 
that reason, (5) is subjective.  If we restrict the set of agents to exclude Bob, then (5) is 
objective.

(6) Can Carol correctly answer “no” to this question?
Let's ask Carol.  If she says “yes”, she's saying that “no” is the correct answer for her, so “yes” 
is incorrect.  If she says “no”, she's saying that she cannot correctly answer “no”, which is her 
answer.  We are assuming for this and all subsequent questions that the only acceptable answers 
are “yes” and “no”, and in this case, both answers are incorrect.  Carol cannot answer the 
question correctly.  Now let's ask Dave.  He says “no”, and he is correct because Carol cannot 
correctly answer “no”.  So (6) is subjective because it is a consistent, satisfiable specification for 
some agent (anyone other than Carol), and an inconsistent, unsatisfiable specification for some 
agent (Carol).

(7) Can any man correctly answer “no” to this question?
Let's ask Ed, who is a man.  Suppose Ed says “no”.  Ed is saying that no man can correctly 
answer “no”, and Ed, a man, is answering “no”, so Ed is saying that his answer is incorrect.  
Suppose Ed says “yes”.  Ed is saying that some man, let's call him Frank, can correctly answer 
“no”.  But if Frank answers “no”, he is saying that his own answer is incorrect.  So Frank 
cannot say “no” correctly.  So Ed's “yes” answer is incorrect.  And the same goes for every man.  
But Gloria, who is not a man, can correctly say “no”.  Specification (7) is subjective because it 
is a consistent, satisfiable specification for some agent (anyone who is not a man), and an 
inconsistent, unsatisfiable specification for some agent (any man).

(8) Can anyone correctly answer “no” to this question?
If we ask Harry and he says “no”, he is saying that his answer is incorrect.  If he says “yes”, he 
is saying that someone, let's say Irene, can correctly answer “no”.  But if Irene answers “no”, 
she is saying that her answer is incorrect.  So Harry can neither say “no” nor “yes” correctly.  
And the same goes for anyone else we ask.  The correct answer to the question is therefore 
“no”, but no-one can correctly say so (oops, I just did).  I meant:  no-one who is a possible 
agent can say so.  I exclude myself from the set of possible agents just so that I can tell you that 
no possible agent can correctly answer “no”.  Specification (8) is objectively inconsistent.

Specifications (6), (7), and (8) are examples of twisted self-reference.  The self-reference occurs 
when the specification talks about the agent who will perform the specification.  The twist, in 
these examples, is the word “no”.  If we replace “no” with “yes” in these three specifications, 
then everyone can correctly answer “yes” to all of them, making them objectively consistent.

Church-Turing Thesis

If a specification can be computed by any one of:
• a Turing Machine (a kind of computer) [4]
• the lambda-calculus (a mathematical formalism) [0]
• general recursive functions (another mathematical formalism) [1][2]
then it can be computed by all of them;  they all have the same computing power.  The Church-
Turing Thesis [5] says that each of these formalisms computes all that is computable.  In a more 
modern version, the Church-Turing Thesis says that if a specification can be computed, then it 
can be computed by a program in any programming language.  All programming languages 
provide the same computing power;  each is equivalent to a Turing Machine.

Church and Turing were thinking of specifications of mathematical functions, like (0).  It seems 
reasonable to me that the Church-Turing Thesis can be extended to all objective specifications.  
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But its extension to subjective specifications comes up against a problem.

Reconsider subjective specification (7), but replace “man” with “L-program”, meaning a 
program written in programming language L.  (L can be Pascal, or Python, or any other 
programming language.  And we define “program” in such a way that the question whether  p  
is a program in language L is decidable.)
(9) Can any L-program correctly answer “no” to this question?
It's easy to write an L-program that prints “no”.  If that is the answer to (9), it is saying that 
there isn't an L-program that correctly answers “no” to the question, so in particular, the L-
program that prints “no” doesn't give the correct answer.  It's just as easy to write an L-program 
that prints “yes”.  If that program is the answer to (9), it says that “no” is the correct answer, so 
the L-program that prints “yes” doesn't give the correct answer either.  In fact, the correct 
answer to (9) is “no”, but no L-program can correctly say so.  We can write a program in 
language M (which is another programming language) that prints “no” in answer to (9), and that 
answer is correct.  No matter whether the agents are people or programs, the result is the same:  
one agent can satisfy the specification, but another can't.

The Church-Turing Thesis, in the version stated earlier, does not apply to subjective 
specifications.  Specification (9) can be computed by a program in programming language M, 
but not by a program in programming language L.

Another version of the Church-Turing Thesis is that any program in any programming language 
can be translated to a program in any other programming language.  We'll look at program 
translation in a moment, but first, here is a non-programming example to illustrate the 
translation problem.
(10) Is this question in French?
The correct answer is “no”.  The question is easily translated into French.
(11) Cette question est-elle en français?
The correct answer is now “oui”.  Before translation, when the question is put to someone who 
understands the language the question is in, it invokes one behavior:  saying “no”.  After an 
accurate translation, when the question is put to someone who understands the language the 
question is now in, it invokes a different behavior:  saying “oui”.  Specifications (10) and (11) 
refer to a language, and changing the language of the question affects the answer.

Similarly, when we write a program to compute a subjective specification, then translate it to 
another language, it may invoke different behavior.  This can occur when the specification 
refers to a programming language.  First, here's an objective specification that refers to a 
programming language.
(12) Is text  p  an L-program?
Every compiler answers the question whether its input text is a program in the language that it 
compiles.  Whether we write the program that computes (12) in language L or in language M, 
for the same input  p  we should get the same answer.  Specification (12) is objective, and the 
Church-Turing Thesis applies.  Now replace the input with a self-reference.
(13) Is the program answering this question an L-program?
There are two ways to write an M-program to compute (13).  The hard way is to give the 
program access to its own text, perform the lexical analysis and parsing and type checking and 
so on, just as a compiler would do, and then print the answer, which is “no”.  The easy way is 
just to print “no” because that's the right answer.  Now we translate our M-program to language 
L.  If we programmed the hard way, the translated program accesses its own text, does the 
analysis, and prints the correct answer, which is “yes”.  If we programmed the easy way, the 
translated program prints “no”, which is incorrect.  Specification (13) is subjective, and the 
Church-Turing Thesis does not apply.  Either the translation prints the correct answer by 
exhibiting different printing behavior, or the translation exhibits the same printing behavior and 
the answer is incorrect. 
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The same choice, whether to preserve the behavior or to preserve the specification, can occur 
without translation, simply by renaming.  For example,
(14) Given a text  p  representing a program, determine whether a call to the determining 

program appears within  p .
Let's name the determining program  DoYouCallMe .  Given program  p , it searches within  p  
for a calling occurrence of  DoYouCallMe , reporting  “yes”  if one is found, and  “no”  if not.  
Now let's rename the determining program  DoYouCallMe2 .  If we just change the name of the 
program without changing what it is searching for, this name change preserves behavior, but the 
program no longer satisfies the specification (14).  If we change both the program name and 
what it is searching for, the program still satisfies the specification (14), but its behavior 
changes:  given the same input,  DoYouCallMe  and  DoYouCallMe2  may give different 
answers.  If a program has access to its own name, then changing its name automatically 
changes what it is searching for;  the result still satisfies (14), but has different behavior. 

Yet another version of the Church-Turing Thesis is that in any programming language, you can 
write an interpreter for programs in any other programming language.  Interpretation is the 
same as executing a translation, and it is similarly limited to programs that satisfy objective 
specifications.  Given a program that computes a subjective specification, its interpretation may 
produce behavior that differs from execution of the given program.

For objective specifications, I accept the Church-Turing Thesis that we can translate a program 
from any language to any other language preserving both the specification and the behavior.  
For subjective specifications we may not be able to preserve both.  As we saw for specification 
(13), we may be able to choose which one we preserve.  As we saw for specification (9), it may 
not be possible to preserve the specification.  When a program's behavior depends on the 
language the program is written in, it may not be possible to preserve the behavior.  This last 
statement might be best explained by making the programming language explicit.  If program  p  
is written in language L, and on input  x  computes output  y , write  p (L, x) = y .  Translating to 
language M, write  p (M, x) = z .  Even though the input remains  x , the output can change from  
y  to  z  because the language has changed from L to M.

Halting Problem, Language-Based

When Alan Turing laid the foundation for computation in 1936 [4], he wanted to show what 
computation can do, and what it cannot do.  For the latter, he invented a problem that we now 
call the “Halting Problem”.  Without loss of generality and without changing the character of 
the problem, I consider halting for programs with no input (input to a program can always be 
replaced by a definition within the program).  In modern terms, it is as follows.
(15) Given a text  p  representing an L-program that requires no input, report  “stops”  if 

execution of  p  terminates, and  “loops”  if execution of  p  does not terminate.
The input  p  represents a program in programming language L.  The agent that performs 
specification (15) must be a program, written in a programming language, running on a 
computer.  (In fact, Turing used the word “machine” for the combination of program and 
computer, and he used the words “universal machine” for the combination of interpreter 
program and computer.)  I am excluding distributed computations so that I can identify the 
agent.

First, let's ask for a program written in language L to perform (15), and let's call it  halts .  If 
there is such a program, then there is also a program in language L, let's call it  twist , whose 
execution is as follows:

twist  calls  halts (“twist”) to determine if its own ( twist 's) execution will terminate.
If  halts  reports that  twist 's execution will terminate,

then  twist 's execution becomes a nonterminating loop;
otherwise  twist 's execution terminates. 
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We assume there is a dictionary of function and procedure definitions that is accessible to  
halts , so that the call  halts (“twist”)  allows  halts  to look up  “twist”  and  “halts”  in the 
dictionary, and retrieve their texts for analysis. 

When programmed in language L, specification (15) is another twisted self-reference.  The self-
reference is indirect:  halts  applies to  twist , and  twist  calls  halts .  The twist is supplied by  
twist .  If  halts  reports that  twist 's execution will terminate, then  twist 's execution is a 
nonterminating loop.  If  halts  reports that  twist 's execution will not terminate, then  twist 's 
execution terminates.  Whatever  halts  reports about  twist , it is wrong.  Therefore specification 
(15) is inconsistent when we ask for a program written in language L to perform it [3].

Now let's ask for a program written in programming language M to perform (15), where M is 
such that programs written in L cannot call programs written in M.  Can this M-program be 
written?  Since L-programs cannot call M-programs, we cannot rule it out by a twisted self-
reference.  I present two possible answers to the question.

Answer O:  Specification (15) is objective, like specification (12).  But unlike (12), it is an 
inconsistent specification, no matter what language we use.  If we could write an M-program to 
compute halting for all L-programs, we could translate it into L (or interpret it by an L-
program), and because (15) is objective, the translation (or interpretation) would also compute 
halting correctly for all L-programs.  But there is no L-program to compute halting for all L-
programs.  So there is no program in any language to compute halting for all L-programs.

Answer S:  Specification (15) is subjective.  Like specification (13), (15) refers to a 
programming language L.  When programmed in L there is a twisted self-reference;  when 
programmed in M there is no self-reference.  There is an M-program to compute halting for all 
L-programs.  Because (15) is subjective, its translation to L (or interpretation in L) does not 
compute halting for all L-programs.  Perhaps the M-program says correctly that  twist 's 
execution terminates, and its translation to L (or interpretation in L), which we call  halts , says 
incorrectly that  twist 's execution does not terminate, and that is why  twist 's execution 
terminates.

Answer O has been almost unanimously accepted by computer scientists, but its acceptance is 
premature because (15) has never been shown to be objective, and Answer S has never been 
ruled out.  I favor Answer S for the weak reason that I cannot see any inconsistency in asking 
for an M-program to compute halting for all L-programs.  (Writing the Python program would 
prove consistency.  Logicians call that building a model;  a logician's modeling language might 
be some version of set theory.)

Halting Problem, Location-Based

The preceding discussion of halting is language-based.  Here is a similar discussion that is 
location-based.  First a trivial example.
(16) Is this sentence written on page 1?
If (16) is written on page 1, the correct answer is “yes”;  if it is written on page 2, the correct 
answer is “no”.  Although the answer depends on the location of the question, the answer does 
not depend on the agent answering, so it is an objective specification.  We can create a 
subjective specification by creating a question that depends on the location of the agent 
answering.

There are some people in location A, and some other people in different location B.  The 
question is:
(17) Can a person in location A correctly answer “no” to this question?
Anyone in location A who answers “no” to (17) contradicts themself.  But Ingrid, who is 
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standing in location B, can correctly answer “no” to (17) without self-contradiction.  When 
Ingrid walks over to location A, she can no longer correctly answer “no” to (17).  The question 
refers to Ingrid when Ingrid is at A;  the question did not refer to Ingrid when Ingrid was at B.  
Even though she is the exact same person, with the same reasoning power, in either location, a 
correct answer in one location becomes incorrect in the other.

Suppose there are two identical disconnected computers C and D, and all programs are written 
in Pascal, and all programs can run on either computer.  Both computers have enough memory 
so that memory limitation is not an issue.  (Two computers are necessarily in different 
locations.)
(18) Given a text  p  representing a Pascal program that requires no input, loaded on 

computer C, report   true  if execution of  p  terminates, and  false  if execution of  p  
does not terminate.

The agent that performs specification (18) must be a Pascal program running on either C or D.  
Once again, I exclude distributed computing so that I can identify the agent, and once again I 
assume there is a dictionary of function and procedure definitions on each computer.

First, let's ask for a Pascal program running on computer C to perform (18), and let's call it  
halts .  If there is such a program, then we can write another program, let's call it  twist , exactly 
as before, and we can load this program onto computer C.  As before,  twist  calls  halts to 
report on  twist , and then  twist  does the opposite;  so whatever  halts  reports, it is wrong.  
Specification (18) is inconsistent when we ask for a Pascal program running on computer C to 
perform it.

Now let's ask for a Pascal program running on computer D to perform (18).  Can this program 
be written?  Since programs on C cannot call programs on D (the computers are disconnected), 
we cannot rule it out by a twisted self-reference.  As in the language-based case, we have the 
same two possible answers to the question:  Answer O and Answer S. 

Answer O:  Specification (18) is objective.  It is an inconsistent specification, no matter what 
computer we use.  There is no program on any computer to compute halting for programs on 
computer C.

Answer S:  Specification (18) is subjective.  There is a Pascal program on computer D, and 
again let's call it  halts , to compute halting for all Pascal programs on computer C.  We can 
carry the  halts  program from D to C and run it there.  But when we run it on C, it does not 
compute halting for all Pascal programs on C.  This is quite counter-intuitive.  When  halts  
applies to  twist , and  twist  calls  halts , it matters whether the  halts  that applies (the first 
occurrence of  halts  in this sentence) is the same instance as the  halts  that is called (the second 
occurrence of  halts  in this sentence).  In one case, there is a twisted self-reference, and in the 
other, there isn't, and that can affect the computation.

Normally, a program running on one computer will give the same answers to the same 
questions, with equal validity, as the exact same program running on another computer.  This 
seems obvious, perhaps because it is true for objective specifications.  But it is not always true 
for subjective specifications.  The halting specification (18) is a twisted self-reference if the 
program answering it is on computer C, but not a self-reference if the program answering it is 
on computer D.  So it seems probable that halting is subjective.  Even if the program answering 
it is the exact same one on C and on D, a correct answer from the program running on D may be 
incorrect from the same program running on C.  Furthermore, the same program running on C 
and D, with the same input, can give different answers to a question that refers to the location of 
the program.
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Conclusion

A specification is objective if the specified behavior does not depend on the agent that performs 
it, and subjective if it does.  The Church-Turing Thesis applies to objective specifications, not to 
subjective ones.  If an objective specification can be implemented as a program in a 
programming language, it can translated to a program in any other programming language, 
preserving both the specification and the behavior.  If a subjective specification is implemented 
as a program in a programming language, it may not be possible to translate it to a program in 
another programming language, preserving both the specification and the behavior.

Let X and Y be two programming languages, or two computers, or two locations. It is 
inconsistent to ask for an X-program to compute halting for all X-programs due to a twisted 
self-reference.  Twisted self-reference is characteristic of subjective specifications.  So it may be 
consistent and satisfiable to ask for a Y-program to compute halting for all X-programs.  At least 
it has not yet been proven impossible.
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Note added 2020-12-9

I translated
(10) Is this question in French?
to French as
(11) Cette question est-elle en français?
In (10), the words “this question” refer to the question they are part of:  question (10).  It might 
be argued that in (11) the words “Cette question”, being a translation of “this question”, refer to 
the same question that “this question” refers to, which is question (10).  If so, then the answer to 
(11) is “non”, which is a translation of the answer to (10).

In any decent programming language, we can define a function recursively.  In language M we 
can define function  f  such that the body of the definition calls  f .  In the body,  f  refers to the 
function that it is part of.  When we translate from language M to language L, we again define  f  
such that the body of the definition calls  f .  In the body,  f  refers to the L-function that it is part 
of, not to the M-function that we are translating.  So, to be like program translation, I took the 
words “Cette question” to refer to the question they are part of, which is question (11).  As a 
result, the translated question (11) invokes a different behavior:  saying “oui”, which is not the 
translation of the answer to (10).
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