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Number Representation
Eric Hehner

It is no exaggeration to say that our usual representation of natural numbers as a sequence of 
digits, for example  123  (one hundred and twenty-three), is one of humankind's greatest 
inventions.  This essay discusses three enhancements that make the representation more useful:  
the point (.), the rep (·), and the quote (').

Point

Points are in common use;  the point is placed somewhere in the sequence of digits.  For 
example,  12.34 .  In many parts of the world, a comma is used instead of a point, but the idea is 
the same.  If the base of the number representation is ten, the digits are called decimal digits, and 
the point is called a decimal point;  if the base of the number representation is two, the digits are 
called binary digits, and the point is called a binary point;  and similarly for other bases.  Placing 
the point one digit to the left of the right end is division by  10 .  Placing it two digits to the left 
of the right end is division by  100 .  And so on.  For example,  12.34  =  1234 / 100 .  A point 
can be at the left end of the digits, or between two digits, or at the right end of the digits.  When 
it is at the right end, it is division by  1 , which leaves the number unchanged.  For example,  
123.  =  123 / 1  =  123 .  For the sake of uniformity, we may say that there is always a point, but 
when it is at the right end, we may not bother to write it (it is there but invisible).  Moving the 
point left one place is division by  10 ;  moving it right one place is multiplication times  10 .  We 
can even move the point left when it is at the left end because there are invisible 0s to the left of 
the left end;  they become visible when the point is moved past them.  For example,  
.123 / 10  =  .0123 .  Likewise a point can be moved right even when it is at the right end because 
there are invisible 0s to the right of the right end.  For example,  123. × 10  =  1230. .

A point enables us to represent those nonnegative rational numbers that are the result of dividing 
a natural number (0, 1, 2, and so on) by a power of the base (1, 10, 100, and so on).

Rep

There are several notations in use that are equivalent to the rep.  One is to write a line over top of 
some of the rightmost digits.  For example,  12.345 .  This is a finite way of writing an infinite 
sequence of digits  12.34545454545→  (using  →  to mean “and so on forever”;  it is not part of 
the number representation;  it is part of the explanation of the number representation, just like 
these words).  But a line over top of some digits is typographically inconvenient, so a rep (raised 
dot) is used instead:  12.3·45 .  The digits to the right of the rep are understood to be repeated 
forever.  The rep can come before the point.  For example,  1·2.3  =  12.323232323→ .  The rep 
can be in the same position as the point.  For example,  12:34  =  12.3434343434→ .  The rep 
can be at the left end or the right end.  When a rep is at the right end, the invisible 0s to the right 
of the right end are repeated.  For the sake of uniformity, we may say that there is always a rep, 
but when it is at the right end, we may not bother to write it (it is there but invisible).  For 
example,

1.2  =  1.2·  =  1.2·0  =  1.20000000→
If there is a rep but no point, the point is invisibly at the right end of the visible digits.  For 
example,

1·2  =  1·2.  =  12.2222222222→ 

http://www.cs.utoronto.ca/~hehner
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Using a sequence of digits with a point and a rep, we can represent all and only the nonnegative 
rational numbers.  It is therefore impossible to perform a negation operation with only a point 
and rep.  The addition, subtraction, and multiplication operations all start at the right side of their 
operands, and work from right to left.  But a rep indicates an infinite sequence of digits with no 
right end, making these operations difficult in general.

A sequence of digits with a rep is produced by the division operation that was taught in schools 
for centuries prior to the widespread availability of electronic calculators.  As an example, we 
can do the division  611 / 495 .  To the right of the right end of each operand there is an invisible 
point, and an invisible rep, and invisible 0s, which we will need to make visible one by one as we 
proceed through the division.  We repeatedly guess the next digit in the answer, multiply the 
divisor  495  times that guess, and reduce the dividend by that amount.  The guess must be the 
largest digit such that the divisor times the guess is less than or equal to the current dividend.  
Division is a sequence of guesses, multiplications, and subtractions.  When the current dividend 
is the same digit sequence as a previous dividend, we know where to insert the rep, and we are 
done.

            1.2·3 4  answer we are producing, digit by digit, left to right
4 9 5 \ 6 1 1.0 0 0
      – 4 9 5
        1 1 6 0
      –   9 9 0
          1 7 0 0
        – 1 4 8 5
            2 1 5 0
          – 1 9 8 0
              1 7 0 0    same digit sequence as two steps ago

Quote

A quote is just like a rep but in the opposite direction.  For example,  12'34  says that the digits  
12  are repeated forever to the left:  12'34  =  ←1212121234  (using  ←  to mean “and so back 
forever”;  it is not part of the number representation).  The quote can come at the left end, 
between two digits, or at the right end.  When a quote is at the left end, the invisible 0s to the left 
of the left end are repeated.  For the sake of uniformity, we may say that there is always a quote, 
but when it is at the left end, we may not bother to write it (it is there but invisible).  For 
example,

123  =  '123  =  0'123  =  ←000000123
So the natural numbers look familiar:  0 ,  1 ,  2 , and so on.

Using a quote, negative integers will look familiar if you know radix complement arithmetic (in 
base 2 it's 2's complement;  this is 10's complement).  To negate, take the complement of each 
digit (0 becomes 9; 1 becomes 8; 2 becomes 7; and so on) and then add  1  to the final digit.  So  
0'123  becomes  9'876  and then add  1  to get  9'877 .  To negate  9'877 , complement each digit 
and get  0'122  and then add  1  to get  0'123 .

–123  =  9'877
–9'877  =  123

Addition works the same for numbers with a quote as it does for numbers without a quote.  For 
example, we will add  –123 + 123  and get  0  (the 1's in the middle row are the carries). 
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  9'8 7 7
   1  1  1
+ 0'1 2 3
= 0'0 0 0

For another example, we add  –123 + 456  and get  333 .
9'8 7 7
1  1  1

+ 0'4 5 6
= 0'3 3 3

Subtraction works as follows.
2 7 0 0 4
   1  1  1

– 0 3 5 2 6
= 2 3 4 7 8

In the rightmost column, to subtract  6  from  4 , we do not borrow from the  0  to the left of the  
4 ;  instead we carry  1   to the  2  to the left of the  6 .  The carry makes the  4  into  14  so we 
subtract  6  from  14  and get  8 .  In the next column, the carry is added to the  2 , so we are 
subtracting  3  from  0 .  And so on.  With this kind of subtraction we can subtract  0'123  from  0'  
and get  9'877.

0'0 0 0
1  1  1

– 0'1 2 3
= 9'8 7 7

Multiplication with a quote is exactly the same as multiplication without a quote.  For example, 
we multiply  –2 × 13  and get  –26 .

    9'8
  × 1 3
    9'4
  9'8  
= 9'7 4

As noted previously, a sequence of digits with a rep is produced by the usual division operation, 
which we will now call rep division;  it produces digits from left to right.  A sequence of digits 
with a quote is produced by a division operation that works in the opposite direction, from right 
to left, which we call quote division.  For example, let us evaluate  191 / 33  using quote division.  
The dividend is  191  and its rightmost digit is  1 .  The divisor is  33 , and its rightmost digit is  
3 .  We need to multiply the divisor times a digit  d  such that  d×3  ends in  1 .  So the rightmost 
digit of the answer is  7 .  Now  7 × 33 = 231 , so that's what we subtract from the dividend.  
Delete the rightmost  0  (which divides by  10 ), giving a new dividend of  9'6 .  Repeat, until we 
get a dividend that we have seen before.  That tells us where to put the quote, and we're done.

     1 2'7          answer we are producing, digit by digit, right to left
     1 9 1 / 3 3         dividend / divisor
  –  2 3 1                       minus divisor times 7
     9'6                            difference, delete rightmost 0, new dividend
  –  6 6                            minus divisor times 2
   9'3                                 difference, delete rightmost 0, new dividend
–  3 3                                 minus divisor times 1
 9'6                same digit sequence as two steps ago  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In quote division, each digit is determined by the rightmost digit of the current dividend and the 
rightmost digit of the divisor;  there's no guess as there is in rep division.  Unfortunately, this 
works only when the divisor has no factors in common with the base.  In decimal, the divisor's 
rightmost digit must be  1 ,  3 ,  7  or  9 .  If the divisor's rightmost digit is  0 , just delete it (thus 
dividing the divisor by  10 ), and move the point one place to the left in the answer.  If the 
divisor's rightmost digit is  2 ,  4 ,  6 , or  8 , multiply both the divisor and the dividend times  5 , 
then delete the divisor's rightmost  0 , and adjust the point in the answer as before.  If the 
divisor's rightmost digit is  5 , multiply both the divisor and the dividend times  2 , then delete 
the divisor's rightmost  0  and adjust the point in the answer as before.  It is annoying to have to 
get rid of the factors of the base, but once that's done, quote division can proceed without 
guessing.

We don't have to get rid of factors of the base if we use a prime base.  Base  2  is prime, and it 
makes quote division particularly easy.  Any 0s at the right end of the divisor are deleted, and the 
point in the answer will be moved that many places to the left.  If the current dividend's right end 
is  1 , that's the next bit of the answer, and we subtract the divisor, and delete the difference's 
rightmost  0 .  If the current dividend's right end is  0 , that's the next bit of the answer, and we 
don't subtract the divisor, and we delete the difference's rightmost  0 .  The difference then 
becomes the current dividend.

The quote allows us to represent both positive and negative numbers.  To determine whether a 
number with a quote is positive or negative, just compare the first digit of the repeating sequence 
to the left of the quote with the first digit after the quote.  If the first digit of the repeating 
sequence is larger, the number is negative.  If the first digit after the quote is larger, the number is 
positive.  If those two digits are equal, either the number is  0 , or the representation can be 
shortened (see Duplication below).  For example,  12'345  is positive because  1  is less than  3 .  
And  9'  is negative because the first digit of the repeating part, which is  9 , is larger than the first 
digit after the quote, which is an invisible  0 .  And  '9  is positive because the first digit of the 
repeating part, which is an invisible  0 , is less than the first digit after the quote, which is  9 .

With just a quote, we can represent those rational numbers that are not the result of dividing an 
integer by a power of the base.  As stated earlier, a point enables us to represent those 
nonnegative rational numbers that are the result of dividing a natural number by a power of the 
base.  With a point and a quote, we can represent all rational numbers.  So the point and quote 
are more expressive (all rationals) than the point and rep (all nonnegative rationals).  With a 
point, a rep, and a quote, we can again represent all rational numbers;  we do not gain 
expressivity over just a point and a quote.

We use a colon (:) for a point and a rep in the same position, an exclamation (!) for a quote and a 
point in the same position, a raised colon (:) for a rep and a quote in the same position, and a 
triplon (⋮) for all three marks in the same position.

Evaluation

The most commonly used arithmetic operators are negation ( –a ), addition ( a+b ), subtraction 
( a–b ), multiplication ( a×b ), division ( a/b ), and exponentiation ( ab ).  Evaluation of an 
expression that contains these operators means finding an equivalent expression as just a 
sequence of digits, using a point, rep, or quote as necessary, but not using any of these operators.  
Other commonly used operators are comparisons ( a<b ,  a>b ,  a≤b , a≥b , a=b , a≠b ).  The 
result of a comparison is either  true  or  false . 
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123+45  is an unevaluated expression;  evaluating it (doing the addition) produces  168 .  
Likewise  –5  is an unevaluated expression;  evaluating it (doing the negation) produces  9'5 .  
Likewise  1/3  is an unevaluated expression;  evaluating it (doing the division) produces either  :3  
or  6'7 , depending on which division algorithm is used.  Evaluating  –1/3  produces  3' .  
Evaluating  103  produces  1000 .  Evaluating   123>45  produces  true .

If someone asks “What is  123+45 ?”, they would not be satisfied to be told “It's  123+45 .”, 
leaving the addition unevaluated.  Similarly, if someone asks “What is  –5 ?”, they should not be 
satisfied to be told “It's  –5 .”, leaving the negation unevaluated.  But we are so used to seeing a 
number less than zero written with a negation operator that we may not realize it is unevaluated.  
Textbooks talk about the “sign-and-magnitude” representation of a number, leaving the wrong 
impression that the minus-sign is just part of the number representation, not an operator.  As a 
result, beginning students of algebra and programming sometimes make the error of thinking that  
–x  is negative, or less than zero.  The “–” in  –5  is exactly the same as the “–” in  –x  and in       
–(x+y) ;  it is not a sign indicating a negative number;  it is the negation operator;  its result may 
be positive or negative or zero.

Unevaluation

Unevaluation is the reverse of evaluation.  It means removing a point, rep, or quote and replacing 
them with arithmetic operators.  For example,  1.23  =  123 / 100 .

Let  x = 1.2·34 .  The repeating part is 2 digits, so we multiply times  100  in order to get a new 
number with the same repeating digits in the same positions:  100×x = 12·3.4 .
Now  100×x – x  =  99×x  =  12·3.4 – 1.2·34  =  122.2 .

1 2·3.4 3 4
– 0 0 1.2·3 4
= 1 2 2.2·0 0

So  x  =  122.2 / 99  =  1222/990 .  Hence  1.2·34 = 1222/990 .

Let  x = 1.2'34 .  This repeating part is also 2 digits, so multiply times  100  getting  
100×x = 12'3.4 .  Now  100×x – x  =  99×x  =  12'3.4 – 1.2'34  =  2.166 .

1 2'3.4 0 0
– 1 2 1.2'3 4
= 0 0'2.1 6 6

So  x  =  2.166 / 99  =  2166/99000 .  Hence  1.2'34 = 2166/99000 .

Let  x = 43'2.1 .  Since the first digit of the repeating part ( 4 ) is greater than the first digit after 
the repeating part ( 2 ), it is a negative number.  We begin by negating it to get a positive number.

–x  =  –43'2.1  =  56'7.8 + .1  =  56'7.9
Now  100×(–x) – (–x)  =  –99×x  =  56'790. – 56'7.9  =  222.1 .

5 6'7 9 0.0
– 5 6 5 6'7.9
= 0 0'2 2 2.1

So  x  =  –222.1/99  =  –2221/990 .  Hence  43'2.1 = –2221/990 . 
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Duplication

Each rational number has many representations.  One criterion for choosing among them is to 
make the representation as short as possible.  In the following equations, all three marks (point, 
rep, quote) are shown.  In each equation, the left side can be shortened to the right side.

!1·2323 = !1·23 repetition within repeating part
1212'3: = 12'3: repetition within repeating part
!12·32 = !1·23 repeating part can be rolled to the left
21'23: = 12'3: repeating part can be rolled to the right
000'1:00 = '1: leading and trailing 0s can be invisible
·0! = ⋮ leading and trailing 0s can be invisible

When the placement of the point requires some leading 0s to be made visible, we choose to place 
the quote as far right as possible.

!001·  =  .00'1·
This does not shorten the representation, but it has the advantage that we can determine whether 
a number is positive or negative by comparing the first digit of the repeating sequence to the left 
of the quote with the first digit after the quote.  When the placement of the point requires some 
trailing 0s to be made visible, we arbitrarily choose to place the rep as far right as possible.

'1·00.  =  '100:

Another duplication of representation occurs when there is an infinite trailing sequence of 9s.
12.34·9  =  12.35

Proof:  9 × 12.34·9  =  10 × 12.34·9  –  1 × 12.34·9  =  123.4·9 – 12.34·9  =  111.15

 1 2 3.4·9
–   1 2.3 4·9
= 1 1 1.1 5

So  12.34·9  =  111.15 / 9  =  12.35 .

For positive rational numbers, the quote and the rep offer competing representations.  Here are 
two representations of one-third.

6'7  =  :3
Dividing  1  by  3  using quote division produces the left side;  dividing  1  by  3  using rep 
division produces the right side.  Each can be verified by multiplying it times  3 .  To convert a 
positive number from quote representation to rep representation, unevaluate it and then re-
evaluate it using rep division.  To convert a positive number from rep representation to quote 
representation, unevaluate it and then re-evaluate it using quote division.

Here is another way to shorten a representation that needs some explanation.
·1!  =  ⋮

Expanding  ·1!  we get a doubly-infinite sequence of 1s with a point somewhere.
←1111111.1111111→

Multiplying that times  10  moves the point right one place.  But there's no difference.
10 × ·1!  =  ·1!

Therefore  ·1! = 0 .  (But see this warning.)  A similar calculation shows that  ·123! = 0 , and the 
same for any other digit sequence preceded by a rep and followed by a quote, with a point 
anywhere. 

http://www.cs.utoronto.ca/~hehner/Euler.pdf
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With all three marks (point, rep, quote), finding the shortest form is complicated.  With just point 
and quote (rep is invisibly at the right end), every rational number has a unique shortest form 
found as follows:  remove repetitions within the repeating part, roll the repeating part as far as 
possible to the right, and delete unnecessary leading and trailing 0s.

Understanding

An unevaluated expression, or a partially evaluated expression, can sometimes be more 
understandable than a fully evaluated expression.

Perhaps the most important attributes of a number, at least for human understanding, are its sign  
(is it greater than zero, equal to zero, or less than zero?) and magnitude (how far is it from zero?).  
For that purpose, a positive number is best represented with a point and rep.  For example, it is 
clear that  12:3  is more than  12  but less than  13  units from zero.  But  6'79 , which is the same 
number, is less obviously so.  For that same purpose, a negative number is best represented as an 
unevaluated negation with a point and rep.  For example,  –12:3  is clearly between  12  and  13  
units less than zero.  But  3'21 , which is the same number, is less obviously so.

If you cut a pie into three equal parts, how much of the pie is each part?  The answer is obtained 
by doing the division  1/3 , and we get either  :3  or  6'7 .  But the unevaluated expression  1/3  
says more clearly that it's the amount of pie that results from cutting one pie into three parts.

The magnitude of a large number like  12300000000000000  is not so apparent because we have 
to count the digits.  Scientific notation represents this number as  1.23×1016 .  Leaving the 
exponentiation and the multiplication unevaluated makes the magnitude clearer.  (On the other 
hand, any author writing for non-scientists feels the need to explain that  1016  is a 1 followed by 
sixteen 0s;  the author explains  1016  by evaluating it.)  Similarly for small numbers like  
0.000000000000000123 .  Unevaluated scientific notation  1.23×10–16  saves us from counting 
digits.

In extreme cases, evaluation is impractical.  If we evaluate  265536  we get a digit sequence with 
about twenty thousand digits in it, and the evaluation obscures the fact that it's a power of  2 .  (In 
fact, this example is an exponentiation tower of six 2s, which is typographically inconvenient.)

In some cases, evaluation is impossible.  Finite sequences of digits with point, rep, and quote 
represent all and only the rational numbers.  We can write the unevaluated expression  21/2 , 
which is a square root of two, an irrational number, but we cannot evaluate it.  We can 
approximate it, for example,  1.41421356237 , but we cannot evaluate it exactly.  We can write 
the unevaluated expression  (–1)1/2 , which is a square root of minus one, an imaginary number, 
but we cannot evaluate it, not even approximately.

Computation

A number might be an input or an output, coming from or going to a human, in which case it 
should be expressed in the form that is best for human understanding, as just discussed in the 
previous section.  Or a number might be part of a computation, coming from a previous 
operation and going into a subsequent operation.  In this section, we look at what form is best for 
that purpose.

Rational numbers represented with (a negation and) a point and a rep cannot, in general, be 
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added, subtracted, or multiplied in that form, due to the lack of a right end.  They also cannot be 
divided because division requires subtraction.  The easiest way to do these operations is to 
translate the numbers to quote notation, then perform the operations.  Rep division for natural 
numbers was described earlier as a sequence of guesses, multiplications, and subtractions, then 
comparing the current dividend with all previous dividends in order to recognize the repetition 
and insert the rep.  A computer does not “guess”;  it repeatedly subtracts the divisor from the 
current dividend until the result is negative, then backs up one subtraction.  (There are tricks to 
speed this up, but we won't go into them here.)

For comparing the magnitudes of two numbers, rep is better than quote.  In rep notation, the 
usual algorithm is the following:  align the points;  if necessary, make enough leading 0s visible 
so that the leftmost digits of the two operands are aligned;  then compare corresponding digits, 
left-to-right, until the first pair that differ.

 1 2.3·4 5
> 0 5:4 3  
= true

This comparison algorithm is not quite correct.  It incorrectly says that  1.23·9  is smaller than  
1.24 , but they are equal.

Rational numbers represented with a point and quote can be added, subtracted, and multiplied the 
same way as natural numbers plus repetition detection.  They can be negated.  Quote division, in 
a nonprime base (like ten), starts by removing factors of the base from the divisor.  In a prime 
base (like 2), this step is void.  Then quote division proceeds just like multiplication, producing 
the answer digits from right to left, each one determined by the rightmost digit of the current 
difference and divisor (no “guesses”;  trivial in binary).  Comparison is a subtraction followed by 
sign determination.

Rational numbers in the unevaluated form  a/b  or  –a/b , where  a  is a natural number and  b  is 
a positive natural, can be negated, added, subtracted, multiplied, and divided without evaluating 
them, producing a result in the same form.  To add two unevaluated (negations and) divisions, for 
example  (a/b) + (–c/d) , requires the following steps.
• sign comparison to determine if we will be adding or subtracting;  in our example, the signs 
differ so we will be subtracting
• then 3 multiplications;  in our example,  a×d ,  b×c ,  b×d
• then, if we are subtracting, a comparison of  a×d  to  b×c  to determine which is subtrahend and 
which is minuend, and what is the sign of the result;  let's say a×d < b×c so the sign will be  –
• then the addition or subtraction;  b×c – a×d  and we have  –(b×c – a×d)/(b×d)
• finding the greatest common divisor of the new dividend and divisor
• dividing dividend and divisor by their greatest common divisor to obtain a normalized result
Normalizing the result is not necessary for correctness, but without it, the space requirements 
quickly grow during a sequence of operations.  Subtraction is almost identical to addition.  
Multiplication is sign determination, two multiplications, and normalization.  For example,

(a/b) × (–c/d)  =  –(a×b)/(c×d)
Division is similar to multiplication.

(a/b) / (–c/d)  =  –(a×d)/(b×c)
Comparison is similar to division.

(a/b) > (c/d)  =  (a×d) > (b×c)

Two numbers represented in scientific notation  x×bn  and  y×bm  can be multiplied producing an 
answer in scientific notation by doing a sign determination, a multiplication, and an addition  
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x×y × bn+m .  For example,
(2.34×1012)×(–5.67×107) = –(2.34×5.67)×1012+7 = –13.2678×1019 = –1.32678×1020

To add or subtract them requires adjusting the point and exponent of one number to make their 
exponents equal;  checking their signs to determine whether to add or subtract;  if subtracting, 
comparing the magnitudes to determine which is the subtrahend and which the minuend and to 
determine the sign of the result, then adding or subtracting, then possibly again adjusting the 
point and exponent.  To compare them requires adjusting the point and exponent of one number 
to make their exponents equal, then comparing the other factors.

The time required to perform an operation depends on the number of steps, and also on the 
lengths of the operands, which we look at next.

Space

Quote notation and rep notation require essentially the same amount of space.  But that amount 
can differ greatly from the space required for an unevaluated expression.  We saw the example 
earlier that  265536  requires about twenty thousand digits.  The biggest win for unevaluated 
(negation and) division occurs for some prime divisors.  For examples,

1/7 = :142857  =  285714'3
1/23 = :0434782608695652173913 = 6956521739130434782608'7
( 1/7  in binary is  1/111 =  :001 = 011'1 )
( 1/23  in binary is  1/10111 = :00001011001 = 01111010011'1 )

To represent  1/947  as an unevaluated division requires 4 decimal digits or 12 binary digits, but 
rep or quote notation requires 474 decimal digits or 947 binary digits.  (Extra bits are required to 
delimit two variable-length numbers, but these are the same for all representations, so ignoring 
them does not affect the comparison.)

Here is a pattern of decimal quote notation such that the unevaluated negation and division takes 
about three time as as many digits, independent of scale.

.100000001' = –100000001/999999999000000000 (9 versus 27 digits)

.100000000000001' = –100000000000001/999999999999999000000000000000
(15 versus 45 digits)

Exactly the same pattern in binary produces the same result.
.100000001' =  –100000001/111111111000000000 (9 versus 27 bits) = –257/261632
.100000000000001' = –100000000000001/111111111111111000000000000000

(15 versus 45 bits) = –16385/1073709056

Worst-case examples, some of which we have just seen, and worst-case analysis, which we have 
not presented, are not representative of the space requirements that one encounters in practice.  
The 180,000 shortest dividend-divisor pairs require 15.65 bits on average, and those same 
numbers in rep or quote notation require 39.48 bits on average.  Taking the shortest dividend-
divisor pairs, and then evaluating to rep or quote notation, results in a biased comparison in favor 
of dividend-divisor pairs.  If we take all binary quote representations up to and including 14 bits 
(all quote positions and all radix point positions), then discard those that are not in shortest form, 
we have 1,551,567 numbers requiring 13.26 bits on average.  If we unevaluate them to dividend-
divisor pairs (with a negation if necessary), then normalize the result by removing common 
factors, they require 26.48 bits on average.  This comparison is biased in favor of quote notation.  
The programs used to calculate these numbers are in the Appendix.
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Approximation

Current computer hardware typically offers approximate floating-point arithmetic in two 
precisions:  32 bits and 64 bits.  Numerical analysis is concerned with arranging a computation to 
get the most accurate answer possible using the approximate arithmetic provided by the 
computer hardware.  Sometimes more accuracy is wanted than is possible using the hardware 
available.  Sometimes perfect accuracy is wanted.  It is possible to build hardware that provides 
perfect accuracy, but even without it, there are software packages that provide perfect accuracy.  
Perfect accuracy requires variable-length representations, which could, if suitable hardware were 
designed, be shorter on average than fixed-length hardware representations, but longer in the 
worst case.  Ideally, each programmer should be able to choose the accuracy they need and are 
willing to pay for in space and time.  Arithmetic should be perfect, but an approximation operator 
can be used to shorten representations whenever the loss of accuracy is not too damaging.  This 
turns numerical analysis around:  instead of analyzing the accuracy you are given, you choose 
the accuracy you can afford. 

To approximate a positive number in quote notation, for example  12'34.567 , first convert it to 
rep notation  22.445·78 , and then approximate by truncation or rounding:  to  22.4458  or  
22.446  or  22.45 , and so on.

Conclusion

A sequence of digits is the standard way to represent a natural number.  It is also standard to use 
a point (or equivalent notation), extending the representation to some nonnegative rational 
numbers.   We are taught in school, though it is not standard practice, to use a rep (or equivalent 
notation), extending the representation to all nonnegative rational numbers.  With a point and 
quote, we can represent all rational numbers.  With all three (point, rep, quote) we have all 
rational numbers with multiple representations.  The rep has the advantages that magnitude is 
easily seen, and comparisons and approximations are easily made, but the disadvantages that 
negation cannot be performed, and further additions, subtractions, multiplications, and divisions 
are difficult.  The quote has the advantage that all further arithmetic can be performed.

For some purposes (understanding or space), it is sometimes best to leave some arithmetic 
operations unevaluated.

Another Paper on the same topic: 
E.C.R.Hehner, R.N.S.Horspool: a New Representation of the Rational Numbers for Fast, Easy 
Arithmetic, SIAM Journal on Computation v.8 n.2 p.124-134, 1979 May

a Video on the same topic:  hehner.ca/NRvideo.mp4 

a PhD Thesis that studied quote numbers is “P-adic Number Systems for Error-free 
Computation” by Ruth Ann Lewis, The University of Tennessee, 1979 August (supervised by 
Robert Todd Gregory) 

http://www.cs.utoronto.ca/~hehner/ratno.pdf
http://www.cs.utoronto.ca/~hehner/ratno.pdf
http://www.cs.utoronto.ca/~hehner/NRvideo.mp4
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Appendix:  Programs for Calculating Lengths

First we list the shortest numbers as unevaluated (negation and) division, evaluate them using 
binary quote and point, and compare their lengths.  In both the unevaluated and evaluated forms, 
there are two sequences of digits with variable length, so further bits are required to delimit these 
sequences.  These are the same for both forms, so their omission does not affect the comparison.  
The programming language is ProTem.

` Procedure  norm  normalizes a numerator and denominator by removing their greatest common 
` divisor.

new gcd (|〈a: nat+1.  〈b: nat+1.  ` greatest common divisor of  a  and  b
      a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|).

new norm  ⟦plan num:= nat+1 ⟦denom:= nat+1 ` normalize num/denom
         ⟦new g:= gcd num denom.  num:= num/g.  denom:= denom/g⟧⟧⟧.

` Procedure  rspace  calculates the space required for the unevaluated (negation and) 
` division representation of a rational number.

new rspace (| 〈num: nat+1. 〈denom: nat+1.
value s: nat:= 1 ` 1 bit for the sign

            ⟦new n: nat:= num.  new d: nat+1:= denom.
  loop ⟦n:= div n 2.  s:= s+1.  if n>0 ⟦loop⟧⟧.
  loop ⟦d:= div d 2.  s:= s+1.  if d>0 ⟦loop⟧⟧⟧〉〉|).

` Procedure  qspace  calculates the space required for the roll-normalized quote notation 
` representation of a rational number.  (It is not repeat-normalized.)  No space is given to 
` the point and quote.

new qspace (| 〈num: nat+1. 〈denom: nat+1.
value s: nat:= 0

            ⟦new n: nat:= num.  new d: nat+1:= denom.
  loop ⟦if even n ⟦n:= n/2.  loop⟧⟧.
  loop ⟦if even d ⟦d:= d/2.  loop⟧⟧.
  new remainders: *int:= n.

  ` Function  rem  says whether its argument is in the  remainders  string.
  new rem (| 〈n: int. value rem: bin:= ⊥

            ⟦new i: nat:= 0.
  loop ⟦if i≠↔remainders

   ⟦if n=remainders_i ⟦rem:= ⊤⟧
              else ⟦i:= i+1.  loop⟧⟧⟧⟧〉|).

   loop ⟦s:= s+1.
 if even n ⟦n:= n/2⟧ else ⟦n:= (n–d)/2⟧.
 if – rem n ⟦remainders:= remainders; n.  loop⟧⟧⟧〉〉|).

http://www.cs.utoronto.ca/~hehner/PT.pdf
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new count: nat:= 0. ` number of examples
new qsum: nat:= 0. ` total length of evaluated numbers
new rsum: nat:= 0. ` total length of unevaluated numbers

for num: 1;..301
⟦for denom: 1;..301
  ⟦new n: nat:= num.  new d: nat:= denom.  new r: nat+1:= 1.  new q: nat+1:= 1.
    norm n d.  r:= rspace n d.  q:= qspace n d.
    count:= count+2.  ` because negatives and positives take the same space
    rsum:= rsum+r.  qsum:= qsum+q⟧⟧.

! “count=”; count; nl; 
  “average unevaluated length=”; rsum/count; nl; 
  “average evaluated length=”; qsum/count.

old count.  old rsum.  old qsum

Here is the output:

count=180000 
average unevaluated length=15.653334 
average evaluated length=39.479668

Next we list the shortest numbers evaluated using binary quote and point, unevaluate them into 
(negation and) division form, and compare their lengths.

new shl (|〈n: nat.  〈m: nat.  ` shift  n  left  m  places;  n×2^m
     value r: nat:= n ⟦for i:= 0;..m ⟦r:= r×2⟧⟧〉〉|).

new shr (|〈n: nat.  〈m: nat.  ` shift  n  right  m  places;  rounddown (n×2^–m)  or  div n (2^m)
     value r: nat:= n ⟦for i:= 0;..m ⟦r:= div r 2⟧⟧〉〉|).

new count: nat:= 0. ` number of examples
new qlen: nat:= 0. ` total length of quote representations
new rlen: nat:= 0. ` total length of numerator/denominator representations

for length: 1;..15
⟦for string: 0;..(shl 1 length) ` each string of that length
  ⟦for quote: 0;..length ` each quote position (at least one bit to left of quote)
    ⟦if even (shr string (length–1)) ≠ even (shr string (quote–1)) ` roll-normalized
      ⟦if  ` repeat-normalized
            value repeatnorm: bin:= ⊤
            ⟦new len: nat:= div (length–quote) 2. ` the length of the possibly repeating part
              trythislen ⟦if len>0 ` 1 ≤ len ≤ (length–quote)/2
                                ⟦new extract (| 〈i: nat. 〈l: nat → ` index  i  length  l
                                                           shr string i – shl (shr string (i+l)) l 〉〉|).
                                  new ex:= extract quote len.
                                  if  ` the negative part is a repetition (twice or more) of ex
                                      value r: bin:= ⊤
                                      ⟦new i: nat:= quote+len. ` i+len ≤ length
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                                        iloop ⟦new ey:= extract i len. 
                                                   if ex=ey ⟦i:= i+len. ` i≤length
                                                                   if i+len ≤ length ⟦iloop⟧

       else ⟦r:= ⊥⟧⟧
                                                   else ⟦r:= ⊥⟧⟧⟧
                                  ⟦repeatnorm:= ⊥⟧ else ⟦len:= len–1.  trythislen⟧⟧⟧⟧
          ⟦for point: 0;..length+1 ` each point position (right end, interior, left end)
            ⟦if  ` the rightmost bit is 1 or it's to the left of quote or point
                   odd string ∨ (quote=0) ∨ (point=0)
              ⟦ ` convert to numerator/denominator
                 new num: nat:= shl string (length–quote) – string – shl (shr string quote) length.
                 if num<0 ⟦num:= –num⟧. 
                  new denom: nat:= shl (shl 1 (length–quote) – 1) point.
                  norm num denom.
                  ` update statistics
                  count:= count+1.  qlen:= qlen+length.

      rlen:= rlen+1. ` for the sign
      loop ⟦num:= div num 2.  rlen:= rlen+1.  if num>0 ⟦loop⟧⟧.
      loop ⟦denom:= div denom 2.  rlen:= rlen+1.  if denom>0 ⟦loop⟧⟧⟧⟧⟧⟧⟧⟧⟧.

! “In ”; count; “ examples, quote average length = ”;
    qlen/count; “, num/denom average length = ”; rlen/count.

old shl.  old shr.  old gcd.  old norm.  old count.  old qlen.  old rlen

Here is the output:

In 1551567 examples, quote average length = 13.26, num/denom average length = 
26.48


