
Dr Eric Hehner entered the world of computing shortly after the discipline emerged. With over 40
years of experience, he has helped shape the formal methods underpinning in programming evolution

Who has been influencing and supporting
your research at the University
of Toronto?

In 1977 I was fortunate to be invited to join
the International Federation for Information
Processing (IFIP) Working Group 2.3, a team
of about 30 people from all over the world
who collectively invented formal methods,
winning all the top awards in computer
science, including six Turing Awards. We
meet for one week every nine months or so
and discuss our shared research. They have
all been an influence on me, and perhaps I
have been an influence on them. I can’t list
them all, but I will mention just two. Edsger
Dijkstra was both an inspiration and a good
friend; Sir Tony Hoare still is an inspiration
and good friend.

Programming is a useful skill to have,
with the number of people teaching
themselves growing daily. What advice
would you give to these individuals to
improve their theory and practice?

People teach themselves to throw a ball, but
that doesn’t make them ballistics experts.
People teach themselves to strum a guitar,
but that doesn’t make them musicians
(though I admit that a lot of people make

a lot of money playing guitars badly). And
people teach themselves to program (as I
did), but that doesn’t make them software
engineers (though a lot of people make a lot
of money writing programs badly).

When I wrote my first programs, I had no
idea that writing a program could be as
reliable as proving a mathematical theorem.
That’s what you learn from a formal
methods course. I am not saying anything
against teaching yourself to throw a ball,
strum a guitar or program; they are all fun.
But if you want to advance to the next level,
you need a course. As it happens, I offer
an online course that is free, you can start
anytime, and proceed at your own pace
(www.cs.utoronto.ca/~hehner/FMSD).

Among your achievements, you published
a Practical Theory of Programming in
1993. How have you revised the book to
keep the information up to date?

1993 was a couple of years before the
internet became widely available. By 2002
I had accumulated a list of improvements
and updates and some new material, and it
was time for a second edition. By then, the
internet was well established, and I wanted
to make my book freely available on the
internet. Springer, who owned the copyright,
refused. How can they and I make money if
our product is freely available?

To an author of an advanced-level book,
the money is not significant; it can never
repay the work of writing the book. I didn’t
give up the fight, and I had some powerful
allies, so in the end Springer allowed me to
put the book on the web. From my point
of view, the main benefit was the ability
to make changes. When I discovered how
probabilistic programming could benefit
from my formal methods, I added a
section. Anytime I saw a way to improve
an explanation, or to shorten a proof, I
made the change that same day. I always
want my book to be the best I can make it

today, not just the best I could make it 10
years ago. I stopped calling editions ‘first’,
‘second’ and so on, and started calling them
by year-month-day. I also keep a change log,
available for all to see.

Formal methods you have helped create
could one day become the industry norm.
Could you highlight some of the real-
world applications seen to date?

Formal methods, not just mine, have
been used to develop and verify
telephone switching systems and internet
communication protocols, as well as
aeroplane cabin communications. They have
to be used for safety-critical software such
as medical systems, nuclear power plant
controls and aircraft attitude monitors. The
largest software that uses formal methods
is a compiler, and the largest hardware is
a processor (CPU). More commonly, it is
used for parts of systems, like the kernel
of a secure distributed operating system
(software), and a floating-point unit
(hardware). Formal methods were used to
develop Paris’ automated (driverless) metro,
and China’s railway controls. BMW uses
formal methods to develop its monitoring
and reaction systems. But formal methods
are not yet used for banking and financial
software, nor for most application software.

What does the future hold for
quantum computing?

According to the principles of quantum
physics, quantum computers should be able
to perform computations that are infeasible
on today’s computers. I am no expert
at building quantum computers. Those
that have been built have very few qubits
(quantum bits) of memory, and there are
serious problems with decoherence (loss of
quantum properties) happening after only a
few seconds of operation. I don’t know when
quantum computers will become practical,
but when they do, we have the formal
methods for programming them reliably.

Taking command
of software design

	 WWW.RESEARCHMEDIA.EU	 77

D
R ERIC H

EH
N

ER

Formal methods of software design
The formal methods group in the Department of Computer Science at the University of Toronto has been working
to provide a mathematical foundation for software engineering, helping engineers write precise specifications to
say what the software will be for, and then design software whose executions provably satisfy the specifications

DESIGNING ERROR-FREE software is
difficult, but it is essential for software on
which lives depend, such as aircraft control or
pacemaker software. The correctness of each
step in the design and development has to be
proven in the same way that mathematical
theorems are proven. At present, it is possible
to develop small and medium-sized programs
and the critical parts of large programs this
way. In the future, scaling up the use of formal
methods to large software projects requires
the support of a software development tool
that includes an automated prover.

NETTY

Dr Eric Hehner, together with his student Lev
Naiman and former students Anya Tafliovich
and Robert Will, all at the formal methods
group in the Department of Computer
Science at the University of Toronto, Canada,
are designing and implementing a software
development tool named Netty, after Netty
van Gasteren, a pioneer in calculational proof.
For a long time there have been compilers
that tell when a syntax error is made, telling
exactly what the error is and exactly where it
occurs. Netty takes the next step: it is a logic
checker that tells when a logic error is made,
and tells exactly what it is and where it occurs.
To build such tools and to use them effectively
requires knowledge of formal methods. The
word ‘formal’ refers to the use of formal
languages for specification and proof so that
the entire software development process,
including proof of correctness, is at least
machine-checkable, and to a large degree
machine-generable.

One of the features of Netty is that it keeps
track of all specifications and implementations
that it has been used for. Then, when anyone
uses it again for a task, or a part of a task, that is
the same as or sufficiently similar to one that it
has already been used for, Netty completes the
software development automatically.

HOW IT WORKS

Hehner’s main innovation is to treat programs
the same way as specifications, so that pieces
of program and pieces of specification can be
freely mixed and connected. Specifications can
employ programming notations whenever they
are helpful, and engineers can reason about
computations in the full logic, using both the
logic notations and the programming notations.
The reason this is valuable is that engineers start
with a specification, end with a program, and in
the middle of software development they have
a meaningful mixture. During development they
are privy to whether the development is correct;
they do not have to wait until the end to find
bugs. The same formal methods that tell when
a mistake is made during software development
also tell when a mistake is made during software
modification, and that is a big source of bugs.

Hehner’s theory is described in his book a
Practical Theory of Programming (first edition
Springer 1993, current edition free online at
www.cs.utoronto.ca/~hehner/aPToP). There
were previous theories, starting in 1969 with
Hoare Logic, which uses a pair of predicates
for specification. Then came Dijkstra’s weakest
precondition predicate transformers in 1976,
and others since then, such as VDM, Z and B.

Hehner’s theory is simpler, using a single Boolean
expression for specifications. The theory is also
more general, applying to both terminating
and nonterminating computation, sequential
and parallel computation, stand-alone and
interactive computation. It also includes time
bounds, both for algorithm classification and
for tightly constrained real-time applications.
A US Government report noted: “In the most
advanced manifestation, formulated by
Eric Hehner, programming is identified with
mathematical logic. Although it remains to be
seen whether this degree of mathematisation
will eventually become common practice, the
history of engineering analysis suggests that this
outcome is likely”.

OTHER APPLICATIONS

Along with former student Professor Theo
Norvell, now at Memorial University, Hehner
has applied the same theory to the automation
of the logical aspects of digital circuit design,
making it possible to design large-scale circuits
that are entirely verified. To design a circuit, one

The team

The formal methods group at the University
of Toronto consists of Professors Eric
Hehner, Marsha Chechik, Azadeh Farzan
and their students. Hehner develops formal
methods as an aid to software design and
modification. Chechik and Farzan develop
formal methods to verify the correctness
of, or find bugs in, existing software.

DR ERIC HEHNER

	 78	 INTERNATIONAL INNOVATION

Summer school on formal methods, Santa Cruz,
California 1979. Clockwise from left to right: Edsger
Dijkstra (then Professor, Technical University of
Eindhoven, The Netherlands), student, John Backus
(Fellow at IBM, inventor of Fortran, co-inventor of Algol
in 1958 and inventor of BNF, which is used universally to
describe the syntax of programming languages), student,
Dr Eric Hehner (red beard), Professor Rod Burstall
(University of Edinburgh, UK).

FORMAL METHODS OF
SOFTWARE DESIGN

OBJECTIVE

To make error-free software by applying the
methods of mathematical proof to each step
in software design. This requires showing
what mathematics applies, and how it
applies, and also building software tools to
aid practicing software engineers.

KEY COLLABORATORS

Dr Ioannis Kassios, ETH Zürich, Switzerland

Dr Albert Lai, independent, Toronto, Canada

Mr Lev Naiman, graduate student,
University of Toronto, Canada

Dr Anya Tafl iovich, Lecturer, University of
Toronto, Canada

Mr Robert Will, Immobilien Scout, Berlin

CONTACT

Dr Eric Hehner
Principal Investigator

Department of Computer science
University of Toronto
Ontario
M5S 3G4
Canada

T +1 416 509 2762
E hehner@cs.utoronto.ca

ERIC HEHNER received degrees in
Mathematics and Physics at Carleton
University, and a PhD in Computer Science
from the University of Toronto. He then
joined the faculty, becoming Full Professor
in 1983 and Bell University Chair in Software
Engineering in 2001. Hehner’s research has
mainly focused on formal programming
methods. He was Visiting Scientist at Xerox
Research Center, Palo Alto, USA, Visiting
Fellow at Oxford University, UK, Visiting
Researcher at the University of Texas,
USA, Professeur Invité at the Université de
Grenoble, France, Visiting Professor at the
University of British Columbia, Canada, and
at the University of Southampton, UK. He is
a member of the International Federation for
Information Processing (IFIP) Working Group
2.1 on Algorithmic Languages and Calculi,
and Working Group 2.3 on Programming
Methodology. Hehner is an editor of
Acta Informatica and of Formal Aspects of
Computing, and has written two books
(the Logic of Programming, and a Practical
Theory of Programming), many journal and
numerous conference papers.

can just write a program that would perform
the same function. They provide a scheme for
translating the program to a circuit, and also a
proof that their translation scheme is correct.
The resulting circuits are smaller and faster
than the usual synchronous circuits due to the
absence of a global clock. They are also smaller
and faster than asynchronous circuits due to
the absence of ‘handshaking’, which is how
asynchronous circuits (those without a clock)
determine what should happen next. These
gains are achieved by calculated local delays
that are a by-product of the proof.

Hehner has also applied his formal methods
to probabilistic programming, and solved a
long-standing open problem known as ‘the two
envelope problem’. Problems about probabilities
usually describe some events or activities; there
may be a sequence of them, or some parallel
activities or events; there may be some that
are conditional upon others. Describing such
situations formally is exactly what programs
are for. So a program is written to describe
the situation, but it is not executed. Instead,
the programming notations are interpreted as
probability distributions. In other words, the
program already expresses the probabilities,
it just has to be simplifi ed, like any arithmetic
calculation. In fact, a probability calculator could
be used, and Hehner’s team has built one. He adds:
“I don’t actually care about the two-envelope
problem, although probabilists and philosophers

apparently do; I just wanted to illustrate how
my probability calculations work”.

STUDENT SUCCESS STORIES

Former student Anya Tafl iovich, now a
lecturer at the University of Toronto, used
probabilistic programming to provide a basis
for understanding quantum programming
(programming a quantum computer). Quantum
programs are notoriously unintuitive; the
only way to ensure correctness is automated
proof. She now has the proof techniques, and is
currently automating them.

Meanwhile, another former student Ioannis
Kassios, now at ETH Zürich, applied the same
formal methods to the constructs found in
object-orientated programming languages, like
Java. Some of his work has been included in
Microsoft’s verifi er.

Hehner and his students have been laying a
foundation for programming and building
the tools that will enable software engineers
to write more reliable software, hardware
engineers to create better digital circuits,
and engineers of the future to program
quantum computers.

Terminology

 Boolean expression: an expression
that has two possible values

 Predicate: a parameterised boolean
expression

 Specifi cation: a description of the
purpose of a program

 Formal specifi cation: a specifi cation
written in a formal language that the
computer can read

 Formal methods: using formal
specifi cations for developing
software or checking the correctness
of software, preferably with the aid of
an automated tool

INTELLIGENCE

 WWW.RESEARCHMEDIA.EU 79

