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Abstract
We present two new ways to implement ordinary programs with 

logic gates.  One, like imperative programs, has an associated 
memory to store state;  the other, like functional programs, passes 
the state from one component to the next.  Application-specific 
circuit design can be done more effectively by using a standard 
programming language to describe the function that a circuit is 
intended to perform, rather than by describing a circuit that is 
intended to perform that function.  The resulting circuits are produced 
automatically;  they behave according to the programs, and have the 
same structure as the programs.  For timing, we use local delays, 
rather than a global clock or local handshaking.  We give a formal 
semantics for both programs and circuits in order to prove our 
circuits correct.  By simulation, we also demonstrate that the circuits 
perform favorably compared to others.

18.1   Introduction

The design methods for digital circuits that are commonly found in current 
textbooks resemble the low-level machine-language programming methods of 
forty years ago.  Manually selecting individual logic gates in a circuit is 
something like selecting individual machine instructions in a program.  These 
methods may have been adequate for small circuit design when they were 
introduced, and they may still be adequate for large circuits that are simply 
repetitions of a small circuit (such as a memory), but they are not adequate for 
application-specific circuits that perform complicated custom algorithms.



The usual alternative to building application-specific circuits is to use a 
general-purpose processor, and customize it for an application by writing a 
program.  That we can do so was a fundamental insight, due to Turing, upon 
which computer science is based.  But for some applications, particularly where 
speed of execution or security is important, a custom-built circuit has some 
advantages over the usual processor-and-software combination.  The speed is 
improved by the absence of the “machine-language” layer of circuitry with its 
“fetch-execute” cycle of interpretation, and by the ease with which we can 
introduce parallelism.  Security is improved by the impossibility of 
reprogramming.  In addition, unless the application requires a lengthy algorithm, 
there are space savings compared to the combination of software and processor.

The VHDL [8] and Verilog [14] languages are presently being used by 
industry.  These languages allow circuit designers to describe circuits more 
conveniently.  There are interactive synthesis tools to aid in the construction of 
circuits from subsets of these languages.  The circuits are then “verified” by 
simulation.

We do not present a new language for circuit design.  Instead, we advocate 
using a standard programming language (for example, C), not to describe 
circuits, but to describe algorithms.  The resulting circuits are produced 
automatically;  they behave according to the programs, and have the same 
structure as the programs.  For timing we use local delays, rather than a global 
clock (synchronous) or local handshaking (asynchronous).  We give a formal 
semantics for both programs and circuits in order to prove our circuits correct, 
using a theory presented in [5].  By simulation, we also demonstrate that the 
circuits perform favorably compared to others.

There are other high-level circuit design techniques being developed and 
reported in the literature.  Early work includes [12], [13], and [4].  In [3, 7], a 
circuit is specified in a subset of CSP as a set of communicating processes, and 
is transformed into circuits via an intermediate mapping to production rules.  A 
similar approach (and a similar circuit design language) is used in [1, 2], except 
that specifications are mapped into connections of small components for which 
standard transistor implementations exist.  In [15] circuits are modeled as 
networks of finite state machines, and their formalism is used to assist in 
proving the correctness of their compiled circuits.  The work of [6, 10] is most 
similar to ours, but their designs have a global clock;  ours do not.

The success of high-level circuit design will probably be judged the same way 
high-level programming was judged:  on whether the circuits produced are 
competitive with low-level designs, and on whether we are able to design 
complex circuits more easily and more reliably.  The outcome will probably be 
the same for circuits as for programming.

This paper is intended to be self-contained, showing how circuits are built 
from the gate level up.  Consequently we must ask for the patience of 
knowledgeable readers whenever we cover familiar ground.  Sometimes we cover 
familiar ground in an unfamiliar way.
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18.2   Diagrams

Circuits are often expressed as diagrams constructed from “and”, “or”, and “not” 
gates.  We can give a diagram to any other operator by the expedient method of 
placing its symbol in a box.  Here is the  if then else  (also called multiplexer).  
On the right we show an implementation using negation, conjunction, and 
disjunction.

then
else

if x then y else z

x

y

z

if

x

z

y
if x then y else z

By this pair of diagrams, we do not intend to suggest that  if then else  is best 
implemented as shown, but only to show one way it can be implemented, and to 
show how we obtained our performance estimates by counting gate delays.

It is also convenient to define the switch (or demultiplexer), and to give it a 
diagram.

if x then y else ƒ

if

then
else

x

y if x then ƒ  else y y

x

if x then y else ƒ

if x then ƒ  else y

The symbol  ƒ  is for “low voltage” or “ground” or “false”.  We use  †  for 
“high voltage” or “power” or “true”.

The if then else and switch also come in a more general form in which the 
selection is made by an integer rather than a boolean.  For a 2-bit integer 
selection the diagrams are
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3

x

case

x

y

y

if x=0 then y else ƒ

if x=1 then y else ƒ
if x=2 then y else ƒ
if x=3 then y else ƒ

if x=0 then y else ƒ

if x=1 then y else ƒ

if x=2 then y else ƒ

if x=3 then y else ƒ

A thin line indicates a single wire, and a thick line indicates any number of 
wires.  Crossing wires are not connected.

Circuit diagrams are helpful when planning the layout of a circuit, but for 
designing the logic we prefer to use algebraic notation for its ease of 
manipulation.  We give both diagrams and algebraic descriptions, but we do not 
intend the diagrams to indicate layout.

18.3   Time

Ideally, we might suppose that circuit components act instantly, with no gate 
delays, and are represented accurately by timeless boolean expressions.  
Realistically, there are gate delays, and sometimes there are transient signals 
(glitches) while a circuit settles into a stable state.  We must introduce a timing 
discipline to ensure that we do not require, and are not affected by, a result before 
it is ready.  We can consider time to be continuous or discrete;  nothing in this 
paper will depend on that choice.

To talk about time, we find it convenient to introduce the operator  4 , 
pronounced “delay” or “previous”.  It gives the value that its operand had 
previously, a short time ago.  Its diagram looks like this:

4x x

Whenever we need to say formally what constraints a delay time must satisfy,  
we write it to the left of the delay operator, and inside its circuit graphic:

δ4x δ x

Delay time is dependent on context and technology, it is usually determined by 
experiment, and can be known only approximately, say with an upper and lower 
bound.  Sometimes we want the delay to be as short as possible;  when that is 
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the case, signal propagation time through the wire and surrounding gates is 
sufficient, and no extra circuitry is required.  When more delay is needed, it can 
be implemented as an even number of negations, or by a suitable choice of 
layout;  these implementations are not subject to glitches, and so do not raise 
again the problem they are solving.  In addition to its logical use, the delay 
sometimes has the electrical job of reshaping a pulse, both height and width, to 
compensate for degradation.  But that is a level of detail below our concern in 
this paper.

As a formal requirement, for proof of correctness, we need to define the output 
of a delay to be initially  ƒ  for the delay time, and thereafter it is the same as 
the input but delayed.  This initial  ƒ  is the only initialization in our circuits;  
we don't consider initialization circuitry in this paper.

18.4   Flip-flops

A flip-flop has inputs  C  (clock) and  D  (data), and output  Q  (the letter  Q  is 
like the letter  O  for output, but distinguishable from the digit  0 ).  A flip-flop 
behaves as follows:
If the clock is  † , then the output is the data input, otherwise the output 
remains as it was.
This behavior can be formalized directly as follows.

if C=† then Q=D else Q=4Q
We can simplify this boolean expression in two ways.  Equating to  †  is 
always superfluous, just as adding zero or multiplying by one are superfluous.  
And we can factor out the “ Q= ”, obtaining

Q  =  if C then D else 4Q
which we might well have written in the first place.  We now have a definitional 
equation, which is the form suitable for automatic circuit fabrication.  An 
equation is “definitional” if one side is the output.  Here are the black box and 
implementation diagrams.

then
else

if

C

D
QQD

C

For the circuit to operate correctly, the delay must be small enough that no 
change to  D  occurs during the delay preceding the fall of the clock.  For the 
circuit to be as fast as possible, the delay must be as small as possible.  There 
will be a constraint on the minimum delay for electrical reasons, which we do 
not consider here.  With no delay, this circuit is logically equivalent to a standard 
textbook flip-flop.
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We generalize the flip-flop to allow any number of pairs of clock and data 
inputs.  If exactly one of the clock lines is  † , then the output is the 
corresponding data input;  if none of the clocks are  † , then the output remains 
as it was.  Let the clock lines be  C0 , C1 , ...  and let the corresponding data 
lines be  D0 , D1 , ... .  Then the formal specification is

(∃1i· Ci)  ⇒  Q=(∃i· Ci ∧ Di)
(¬∃i· Ci)  ⇒  Q=4Q

Actually, the formal specification is the conjunction of the two formulas.  As is 
customary in mathematics, we sometimes write a list of boolean expressions 
when we mean their conjunction.  The specification is nondeterministic, or in 
circuit terminology, it has “don't cares”, when more than one clock input is  †  
(because we don't intend to make more than one clock input  †  at the same 
time).  We can strengthen the specification if we wish (resolving 
nondeterminism, deciding “don't cares”) because all behavior satisfying a stronger 
specification will also satisfy the original specification.  The circuit designer's 
job is to find an equivalent or stronger specification in the form of a definitional 
equation.  Here's one:

Q   =   ((∃i· Ci ∧ Di)  ∨  (¬∃i· Ci) ∧ 4Q)
We will find it convenient later to provide a clock output  C   that is  †  when 
any of the clock inputs are  † .

C   =   ∃i· Ci

Here are the more general flip-flop diagrams.

C
2

D
2

C
1

D
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C
0

D
0
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Q

C 2
D
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C 1
D

1

C 0
D

0

Q
C
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18.5   Edge-triggering

The flip-flops we have just described remain sensitive to the data input as long 
as the clock is  † .  Sometimes we want a flip-flop that is sensitive to its data 
input only at the rising or falling edge of the clock input.  For example, a 
falling-edge-triggered flip-flop can be defined as

Q  =  if ¬C ∧ γ4C then 4D else 4Q
γ ≥ (edge time) + (negation delay)

The expression  ¬C ∧ 4C  says that the clock is down but was just previously 
up, so it is a falling edge.  The C-delay  γ  should be just large enough to allow 
C to fall and to allow that falling edge to be negated.  The D-delay determines 
what data is latched;  for example, we might want the data from before the 
falling edge, or at its start, or at its end (this delay could be omitted).  As 
always, the Q-delay should be as small as possible.  The diagrams (note the 
down-arrow in the black-box diagram to indicate falling-edge-triggering):

C

D QQD

C

↓

γ

A logically equivalent, slightly larger, slightly faster circuit is obtained from
Q  =  ¬C ∧ 4C ∧ 4D  ∨  ¬4C ∧ 4Q  ∨  C ∧ 4Q

Aside  The standard way to obtain an edge-triggered flip-flop is with a master-
slave pair of flip-flops.  For example, we obtain a falling-edge-triggered flip-flop 
as follows (since we use a triangle for delay, we use just a circle for negation):

Q
PD

C

Algebraically, this is
P  =  if C then D else 4P
Q  =  if ¬C then P else 4Q

We now prove that this master-slave pair is equivalent to our single flip-flop.  
Apply a delay to the  P  equation and to the  Q  equation to obtain

4P  =  if 4C then 4D else 44P
4Q  =  if ¬4C then 4P else 44Q

From the  P ,  Q , and  4P  equations we find
¬C ∧ 4C   ⇒   P=4P ∧ Q=P ∧ 4P=4D

and so, by transitivity,
(*) ¬C ∧ 4C   ⇒   Q=4D
From the  P ,  Q , and  4Q  equations we find

¬C ∧ ¬4C   ⇒   P=4P ∧ Q=P ∧ 4Q=4P
and so, by transitivity,
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¬C ∧ ¬4C   ⇒   Q=4Q
Also, from the  Q  equation alone,

C   ⇒   Q=4Q
Putting these last two implications together we find

¬C ∧ ¬4C  ∨  C   ⇒   Q=4Q
The antecedent can be rewritten
(**) ¬(¬C ∧4C)   ⇒   Q=4Q
Putting (*) and (**) together we have

if ¬C ∧ 4C then Q=4D else Q=4Q
which can be rewritten

Q  =  if ¬C ∧ 4C then 4D else 4Q
So the master-slave combination is logically equivalent, but more complicated.  
End of Aside

Edge-triggering is applicable to more than just flip-flops.  For example, to create 
a switch (demultiplexer) that triggers its output on the rising edge of the  y  
input, and then holds its output for the duration of  †  on  y  (ignoring 
fluctuations on  x ),

t  =  if y ∧ ¬4y then x else if y then 4t else ƒ
e  =  if y ∧ ¬4y then ¬x else if y then 4e else ƒ

These equations can be simplified, and delay times can be added, to get
t  =  y ∧ if ψ4y then τ4t else x
e  =  y ∧ if ψ4y then τ4e else ¬x
ψ > (edge time)  ∧  τ < ψ

By induction over significant instants of time (induction hypothesis: it's true up 
to some time;  induction step: it's still true after the next time that something 
changes), we can prove

t  =  (¬e ∧ y) e  =  (¬t ∧ y)
and further simplify our circuit.  The diagrams (note the up-arrow in the black-
box diagram to indicate rising-edge-triggering):

x

>y t

e

if
then
else↑

ψ

τ

x

y
t

e

∨

>

>

>>
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18.6   Memory

We can aggregate flip-flops into a larger amount of memory called a “word”, 
suitable for storing an  int   or  real  value.  We use the same diagram as for a 
flip-flop but with a thick  D  input and  Q  output to indicate many data lines.

QD

C

Q
D

C

0
0

Q
D
1

1

Q
D
2

2

Q
D
3

3

All bits in the word are written at the same time, and read at the same time.  
Algebraically we describe the word by

∀i·  Qi  = if C then Di else 4Qi

More conveniently, we write
Q  = if C then D else 4Q

as before, even when  Q  and  D  are several bits each.
A RAM (random access memory) is an independent way to aggregate flip-flops 

into a larger amount of memory.  One bit is written at a time, and one bit is read 
at a time.  A bit to be written is selected by the writing address  W , and a bit to 
be read is selected by the reading address  R .

Q

W C

Q

D

C

0

1

2

3

case
0

1

2

3

case

W

D

R

R

! ?
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Algebraically,
Q  =  M[R]
∀i·  M[i]  =  if C ∧ i=W then D else 4M[i]

where  M[i]  is bit  i  in the RAM.
The two ways of aggregating bits can be combined to provide a RAM of 

words.  Here are the diagrams.

Q

W C

QC

0

1

2

3

case
0

1

2

3

case

D

R

! ?

DW R

Adding an arrow in the diagram indicates that the flip-flops are edge-triggered.

18.7   Merge

A merge turns two sequences of pulses into a single sequence of pulses.  (A 
pulse is a momentary  † ).  In a sense, any circuit with two inputs and one 
output is a kind of merge.  An or-gate allows pulses on either input to pass 
through;  an and-gate allows only simultaneous pulses to pass through.

The 1-2-merge has inputs  a  and  b  and output  q .  It outputs a pulse when 
pulses arrive on  a  and  b  in that order, or simultaneously, but not in the other 
order.  To design a 1-2-merge, we introduce an internal wire  A   with the 
meaning “ a  is  †  or has been  † ”.

A  =  (a ∨ α4A)
q  =  (A ∧ b)
α ≤ (pulse time)

(Recall that  4A  is initially  ƒ .)  Unfortunately this is a one-time-only circuit;  
if ever there is a pulse on  a , it will allow all subsequent pulses on  b  to pass.  
To obtain a circuit that resets itself on the falling edge of  q  ready to be used 
repeatedly, we introduce one more internal wire  r  that is  †  except at the 
falling edge of  q .  The circuit becomes
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r  =  (q ∨ ¬γ4q)
A  =  (r ∧ (a ∨ α4A))
q  =  (A ∧ b)
α ≤ (pulse time)  ∧  α ≤ γ

a

b
q

q

a

b

A

r

a

g

1

2

Internal wires can be left exposed, as in the above specification of 1-2-merge and 
the right-hand diagram, or they can be hidden as in the left-hand diagram and the 
following specification:

∃r, A· r  =  (q ∨ ¬γ4q)
∧ A  =  (r ∧ (a ∨ α4A))
∧ q  =  (A ∧ b)

If a pulse on  a  follows a pulse on  b , there must be a delay of at least  γ  after 
the end of  b  before the start of  a  to avoid truncating the output pulse.  No 
circuit can constrain its inputs;  its context of use must constrain its inputs, so a 
constraint is expressed formally as an antecedent rather than a conjunct.  The 
circuit specification is therefore

¬(a ∧ ¬γ4a ∧ b)
⇒ ∃r, A·  r = (q ∨ ¬γ4q)  ∧  A = (r ∧ (a ∨ α4A))  ∧  q = (A ∧ b)

A merge that outputs a pulse when the second of the two input pulses arrives, 
regardless of their order, and resets itself for reuse, is as follows.  The inputs are  
a  and  b  and the output is  q .  Internal wire  A   means “ a  is  †  or has been  
† ”;  internal wire  B  means “ b  is  †  or has been  † ”;  internal wire  r  is  †  
except at the falling edge of  q .  The circuit is

r  =  (q ∨ ¬γ4q)
A  =  (r ∧ (a ∨ α4A))
B  =  (r ∧ (b ∨ β4B))
q  =  (A ∧ B ∧  (a ∨ b))
α ≤ (pulse time)  ∧  α ≤ γ  ∧  β ≤ (pulse time)  ∧  β ≤ γ

a

a

b
q q

a

b
B

A

r

b

g
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18.8   Imperative circuits

The first of our two translations from programs to circuits produces “imperative” 
circuits (as in “imperative programming”).  An imperative circuit has two 
components, an imperative control  I , and a memory  M , connected like this.

CσRσ Wσ

s
I

M

s′

σ Dσ

!

!?

?

↓

The memory consists of a word for each global variable and a RAM for each 
global array in the program.  (We present local variables later.  By making 
variables as local as possible, we minimize the need for the global memory.)  
Suppose the variables are  x  and  y , and the arrays are  A   and  B .  Then there 
are four clock wires, called  Cx ,  Cy ,  CA , and  CB  , and collectively called  
Cσ .  With one clock wire for each variable and each array, the variables and 
arrays can be independently and asynchronously changed.  The data inputs are  
Dx  ,  Dy ,  DA , and  DB , collectively called  Dσ .  The address wires are  
W A  ,  W B  ,  RA  , and  RB , collectively called  Wσ  and  Rσ .  The memory 
outputs are  x ,  y ,  A[RA]  and  B[RB] , collectively called  σ , the state of 
memory.  Altogether, memory is

M   = (    x  =  (if ¬Cx ∧ 4Cx then 4Dx else 4x)
∧   y  =  (if ¬Cy ∧ 4Cy then 4Dy else 4y)
∧   (∀i· A[i]  =  if ¬CA ∧ 4CA ∧ i=WA then 4DA else 4A[i])
∧   (∀i· B[i]  =  if ¬CB ∧ 4CB ∧ i=WB then 4DB else 4B[i])  )

We mention again that we are depicting logic, not layout;  the best place for a 
bit of memory may be with a part of the control that uses it.

The state is input to the control, along with an initiator wire  s .  A pulse on  
s  starts the computation.  As the computation progresses, the control changes 
the state of memory, thus providing itself with further input.  To change the 
value of variable  x  in memory, the control must send a pulse on clock wire  
Cx  and the desired new value on wire  Dx .  If the computation is finite, then 
when it is complete, the control indicates termination by a pulse on the 
completion wire  s′ .  It is the responsibility of the context to ensure that the 
control is not restarted before it has completed an execution.

A program is sometimes composed of smaller programs.  (In other 
terminology, a statement is sometimes composed of smaller statements;  we do 
not distinguish between “program” and “statement”.)  When a program is 
composed of parts, the control will be composed of the controls for the parts.  
To make the composition easy, we require of each part that its output  Dx  be  
ƒ  at any instant when it is not changing variable  x  .  Then we can disjoin the  
Dx  wires on their way to memory.  Other variables and arrays are similar.  Here 
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is the diagram:

IQ

M

IP

!

!

!

?

?

?
↓

Each disjunction is really many disjunctions, one for each bit in its operands.
It is not our intention to present a new programming language for circuit 

design;  we advocate using a standard programming language.  We next describe 
the control for a sampling of programming constructs from typical imperative 
languages.

Construct:  empty

We begin with the simplest program:  ok  (sometimes called  skip ).  It is the 
“empty” program, whose execution does nothing, taking no time.  Program  ok  
yields the control

s′=s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ
Its diagram is

ƒ

s s′
σ Dσ

CσWσRσ

We have shown all its inputs and outputs.  But since the  σ  input is not 
connected to anything, there is no point in bringing those wires from memory.  
And since the  Rσ ,  Cσ  ,  Wσ , and  Dσ  outputs are  ƒ , there is no point in 
taking them into a disjunction.  So the circuit reduces to nothing, which is 
appropriate for a circuit that does nothing.

Construct:  delay

The next simplest program is  tick , which also does nothing, but takes time δ 
to do it.

s′=δ4s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ
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Constraints on  δ  must be stated with each use of  tick .  Leaving out the 
nonexistent wires, we have this picture:

s′δs

Construct:  assignment

A variable assignment program  x:= e  yields the control
s′=τ4δ4s  ∧  Cx=δ4s  ∧  Dx=(δ4s ∧ e)
¬Rσ  ∧  ¬Cρ  ∧  ¬Wσ  ∧  ¬Dρ
δ ≥ ( e  time)  ∧  τ ≥ ( s  pulse time) ≥ (memory latch time)

where  ρ  is the state of memory except for  x .  Its diagram is

s′τδs

e

Cx

Dxσ

∨

> >

>

Box  e  evaluates the data expression in the assignment.  We assume for now 
that adders and other circuits to perform numerical operations are available;  
when we have finished presenting high-level circuit design, we will have the 
means to design the circuits to perform integer and floating-point operations by 
writing programs that use only boolean variables and arrays with a restricted 
form of indexing.  Adders and other arithmetic circuits may be duplicated at each 
use for maximum speed, or shared among several uses (by means of the function 
call circuitry which we present later), at the programmer's discretion.  The input 
to  e  is shown as the entire state of memory, but in practice it is just the part of 
memory that  e  depends on.

When the expression  e  is a constant, there is a further simplification.  For 
example,  the assignment  x:= 5  results in the circuit

τ s′s

C

bit 0 of Dx
bit 2 of Dx

∨

>

>
>

since the binary representation of  5 , which is  ...0000101 , has 1s at bit 
positions 0 and 2.

Expression  e  may depend on an array element;  if so, the reading address for 
that array element must be output from the expression circuit, conjoined with  
s  , and routed to memory.  There may be references to elements of several 
arrays, but for now, assume there is at most one array element reference per array 
in  e ;  later, the  result  expression will provide a way to allow an arbitrary 
number of array element references.  We are also assuming that evaluation of 
expression  e  takes a uniform, known amount of time, and the  δ  delay must 
exceed that time;  later, with the  result  expression we will remove that 

394       Hehner, Norvell, Paige



assumption.
An array element assignment program  A[i]:= e  yields the control

s′=τ4δ4s
CA=δ4s ∧ DA=(δ4s ∧ e) ∧ WA=(δ4s ∧ i)
¬Rσ ∧ ¬Cρ ∧ ¬Wρ ∧ ¬Dρ
δ ≥ (e time)  ∧  δ ≥ (i  time)  ∧  τ ≥ (s  pulse time) ≥ (memory latch time)

where  ρ  is the state of memory except for  A .  Its diagram is

e

CA

DA

i

WA

σ

τδ s′s >

>

>

>

∨ ∨∨∨∨

Construct:  sequential composition

To implement sequential composition  P;Q  we suppose that we already have the 
controls  IP  and  IQ  for programs  P  and  Q .  To avoid name clashes we 
systematically rename the inputs and outputs of  IP  by adding the subscript  P , 
and similarly for  IQ .  Then the control for  P;Q  is

IP  ∧  IQ
s=sP  ∧  s′P=sQ  ∧  s′Q=s′
σP=σQ=σ

 Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ) ∧ Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)
Diagrammatically, ignoring the connections between the controls and memory, 
we have

IP IQ
s ′s

Construct:  parallel composition

To implement parallel composition  P||Q  we need to start both programs 
(operands of  ||  are often called “processes”), and then merge the completion 
pulses.  We suppose that we already have the controls  IP  and  IQ  for programs  
P  and  Q .  To avoid name clashes we systematically rename the inputs and 
outputs of  IP  by adding the subscript  P , and similarly for  IQ .  Then the 
control for  P||Q  is

IP  ∧  IQ  ∧  merge
s=sP=sQ  ∧  a=s′P  ∧  b=s′Q  ∧  s′=q
σP=σQ=σ

 Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ) ∧ Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)
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Diagrammatically, ignoring the connections to memory, we have

IP

IQ

s′s

This implementation of parallel composition allows  P  and  Q  to access 
memory simultaneously.  For the memory we have described, simultaneous 
access to different variables or arrays poses no problem.  Even for the same 
variable, simultaneous reads are no problem.  But simultaneously reading and 
writing the same variable, or two simultaneous writes to the same variable, have 
unpredictable results.  Below we will introduce communication channels to 
allow programs to share information without memory contention.

Construct:  conditional composition

To implement conditional composition  if  b then P else  Q  we suppose that 
we already have the controls  IP  and  IQ  for programs  P  and  Q .  To avoid 
name clashes we systematically rename the inputs and outputs of  IP  by adding 
the subscript  P , and similarly for  IQ .  Then the control for  if b then P else 
Q  is

IP  ∧  IQ
sP=(δ4s∧b)  ∧  sQ=(δ4s∧¬b)  ∧  s′=(s′P∨s′Q)
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ) ∧ Wσ=(WσP∨WσQ) ∧ 

Dσ=(DσP∨DσQ)
δ ≥ ( b time)

Diagrammatically, ignoring the connections between the controls and memory, 
we have

IP

IQ

s ′

s

bσ

then
else

if

δ

The assumptions about  b  are the same as those about the expression in an 
assignment.

A one-tailed  if b then P   is just  if b  then P  else ok  .  To make a circuit 
for a  case  program, the  if  circuit is generalized in the obvious way.

Construct:  loop

To implement  while b do P   we suppose that we already have the control  IP  
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for program  P .  To avoid name clashes we systematically rename the inputs 
and outputs of  IP  by adding the subscript  P .  The control for  while b do P   
is

IP
sP=(δ4(s∨s′P) ∧ b)  ∧  s′=(δ4(s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP ∧ Wσ=WσP ∧ Dσ=DσP
δ ≥ ( b time)

Diagrammatically, ignoring the connections between  IP  and memory, we have

IP

s′
s

bσ

then
else

if

δ

Again, the assumptions about expression  b  are the same as those about the 
expression in an assignment.

To implement  repeat P until  b  we suppose that we already have the 
control  IP  for program  P .  To avoid name clashes we systematically rename 
the inputs and outputs of  IP  by adding the subscript  P .  Then the control for  
repeat P until b  is

IP
sP=(s ∨ δ4s′P ∧ ¬b)  ∧  s′=(δ4s′P ∧ b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP ∧ Wσ=WσP ∧ Dσ=DσP
δ ≥ ( b time)

Diagrammatically, ignoring the connections between  IP  and memory, we have

IP

s′s

bσ

then
else

if

δ

Again, the assumptions about expression  b  are the same as those about the 
expression in an assignment.

Some programming languages include a loop with intermediate exits.  Unlike 
the previous constructs,  loop  P  and  exit   cannot be implemented in 
isolation, but must be implemented together.  Ignoring the connections between  
IP  and memory, the control for  loop P  is

IP

s
from exits s′

and that for an  exit  is

s ′s to end of loop ƒ

The  exit  wire to  s′  is shown only so that the circuit has the right inputs and 
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outputs, but in practice it is unnecessary.  To see how this works, consider the 
following example.

loop (P ;  if b  then exit;  Q ;  if c then exit;  R)
Its circuit is

ƒ

s ′
bσ

then
else

if

IP

s ƒ

cσ

then
else

if

IQ IR

Each  exit  consists of a wire leading from a “then” to the final disjunction, and 
a  ƒ  leading into a disjunction.  These  ƒ  inputs and the disjunctions they lead 
into can be eliminated.

Now that we have  loop   and  exit  , we could have defined  while   and  
repeat  as special cases.

Construct:  local variable

To declare local variable  z  of type  T  with scope  P  we write  var z: T· P .  It 
simply adds another word of memory, which is used only within  P .  Formally, 
its control is

∃z, Cz, Dz· IP
where  IP  is the control for  P .  Local declaration helps to locate the words of 
memory near the control circuitry that uses them.  The diagram follows:

IP

s

σ

Cσ

s′

Rσ Wσ

Dσ
Dz

Cz
z

!?

↓

To declare local array  A  of size  s  and type  T  with scope  P  we write  var 
A[s]: T· P .  The size must be a compile-time constant.  It simply adds another 
RAM, which is used only within  P .  There is another way to implement array 
declarations that is preferable in some circumstances.  We can treat the 
declaration of array  A[3]  as syntactic sugar for the declaration of three variables  
A0 ,  A1 ,  A2  .  We treat the data expression  A[i]  as sugar for  case i of A0 | 
A1 | A2 , and the assignment  A[i]:= e  as sugar for  case i of A0:= e | A1:= e | 
A2:= e .  This implementation allows parallel access and update of array 
elements.
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Construct:  procedure

In many programming languages, a procedure is a unit of program that can be 
named, so that it can be called from several places; it is a scope for local 
declarations; and it can have parameters.  These three aspects of procedures are 
separable;  we have already dealt with local scope, we will come to parameters in 
a moment, and now we consider calls and returns.  We suppose that we already 
have the control  IP  for procedure  P .  This circuit is started from any of the 
calls, and indicates its completion to all calling points.

P IP

from callers to callerss′Ps

The calling points each become

s′P

s′s

Ps

1

2

It is a programmer's responsibility (using communications to be described later) 
to make sure that calls from parallel programs are mutually exclusive, so that 
the procedure is not restarted before it completes an execution.  Our 
implementation does not work for recursive calls in general, which are 
significantly harder (actually, the calls are easy but the returns are hard),  but it 
does work for tail-recursive calls.

A parameter declaration can be treated exactly as though it were introducing a 
local variable instead of a parameter.  Whenever a procedure  P  with parameter  
x  is supplied an argument  a , the resulting program  P a  can be treated as 
though it were  (x:= a ;  P) , except that   x  has been taken out of scope.

Construct:  function

A function, in many languages, is even more of a mixture than a procedure.  Its 
separable features are:  the ability to name a data expression so that it can be 
used in different places;  the ability to nest programs (statements) within a data 
expression;  local scope;  and parameters.  The last two aspects have been dealt 
with, and we now consider the first two.

To associate a name with a data expression  e , just put the circuit to evaluate  
e  somewhere.  Its input comes from memory, and its output goes to all uses of 
the name.  The diagram:

eσ to uses

Data expressions occur in various forms of program, such as assignment and  
i f  .  We have been assuming that their evaluation time is predictable at 
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compile-time, but to be general, we allow circuits for data expressions to have a 
control line ( s  input and  s′  output).  The data expression  P result e  requires 
execution of program  P  in order to create the correct state for evaluation of  e .  
Its circuit inserts the appropriate delay in the control line.  The delay may depend 
on the initial state, varying from one evaluation to another;  it is not a worst-
case delay.  Its diagram is

IP

s

σ

s′

e P result  e

CσRσ Wσ

Dσ
? !

δ

where  IP  is the control for program  P  and  δ ≥ ( e  time) .  If  P  changes 
only local variables, so that there are no side-effects, then the outputs  Cσ, Wσ, 
Dσ  to memory are unnecessary.  Expression  e  should be evaluated in the local 
scope, so the input to  e  should include local variables as necessary.  A  result  
expression is often used as the body of a function.  Another use is to help us out 
of an earlier difficulty:  we were not allowed to have references to different 
elements of the same array within one basic data expression.  But a compiler can 
transform an expression like  A[i]+A[j]  into

(var t: int· t:= A[i] result t+A[j])
and so we now lift the earlier restriction.

Construct:  communication

To declare local channel  c  of type  T  with scope  P  we write  chan c: T· P .  
For one writing program and one reading program it is defined as follows.

(chan c: T· P)   =   (var c: T·  var √c: bool·  √c:= ƒ;  P)
It introduces two variables, called the buffer and the probe.  The buffer  c  (same 
name as the channel) holds the value being communicated, and the probe  √c  
(pronounced “check  c ”) tells whether there is an unread message in the buffer.  
We define output of expression  e  and input to variable  x  on this channel as 
follows.

c! e   =   (while √c do tick;  c:= e;  √c:= †)
c? x   =   (while ¬√c do tick;  x:= c;  √c:= ƒ)

Since we have already implemented all constructs on the right sides of these 
definitions, we therefore have implementations of channel declaration, input, and 
output.  But there are two points that need attention.  The  tick  delay must be 
longer than the control pulse (the pulse on  s ) so the control pulse is not lost.  
And the  while  must use an edge-triggered switch so the control pulse will not 
be truncated, split, or otherwise damaged by a change in  √c  due to a parallel 
program.  Although the buffer may also be shared by parallel programs that both 
read and write it, the discipline of use imposed by input and output ensures 
noninterference.
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It may also be useful to introduce signals, which are messages without 
content.  To declare local signal  s  with scope  P  we write  sig s· P  .  For one 
sending program and one receiving program it is defined as follows:

(sig s· P)   =   (var √s: bool·  √s:= ƒ;  P)
It introduces only the probe.  We define sending and receiving this signal as 
follows.

s!   =   (while √s do tick;  √s:= †)
s?   =   (while ¬√s do tick;  √s:= ƒ)

As before, the  tick  delay must be longer than the control pulse, and the  
while   must use an edge-triggered switch.  As examples of their use, we offer a 
second implementation of parallel programs.  For each parallel composition  
P||Q  we introduce a signal  endP  and the circuit is

IP

IQ

s′

s
endP!

endP?

We can also use a signal to reimplement procedures.  For each procedure  P  
introduce signal  endP  and the circuit is

I P

from callers endP!

A call to  P  can be implemented as follows.

s′s
endP?

to declaration

18.9   Functional circuits

The second of our two translations from programs to circuits produces 
“functional” circuits (as in “functional programming”).  Functional circuits are 
not composed of a control and a memory;  instead, each functional circuit 
computes its output  σ′  from its input  σ  without the benefit of a separate 
memory (although some constructs will require internal memory).  There is still 
a start signal  s  to initiate the computation and a stop signal  s′  to indicate 
completion.  Here's the diagram:

F
s′

σ′σ

s

The data input  σ  includes all variables and array elements.  To use the circuit 
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we must provide the desired data input  σ  and a pulse (momentary  † ) on the 
start wire  s , and we must hold  σ  constant ever after (until the circuit is 
restarted).  The functional circuit  F  must provide a correct data output  σ′  and a 
pulse on the stop wire  s′ , and it must hold  σ′  constant ever after (until the 
circuit is restarted).

Construct:  empty

For program  ok  the functional circuit is trivial, as it should be.

s ′
σ′σ

s

Construct:  assignment

A variable assignment  x:= e  looks like this:

σ

s′s

x′e

ρ′

where  ρ′  is all variables and arrays other than  x′ .
Array element assignment  A[i]:= e  looks like this:

case

†

then
else

if

A′[0]A [0]

then
else

if

A′[1]A [1]

then
else

if

A′[2]A [2]

then
else

if

A′[3]A [3]

0

1

2

3

e

i

s′s
ρ′

σ
A
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where  ρ′  is all variables and arrays other than  A′ .

Construct:  sequential composition

Sequential execution is easy.

F
σ

s
F

s′

σ′
P Q

Construct:  parallel composition

For parallel execution, we make the simplifying assumption that the parallel 
programs do not communicate via shared memory, but only via the 
communication constructs provided.  The variables and array elements changed 
by one program are disjoint from those changed by a parallel program, and the 
changes made by one program are not seen by a parallel program.

F

σ

s

F

s′

σ′

P

Q

The entire input can go to both programs, but each program produces only part 
of the output.  These outputs together form the entire output.

Construct:  conditional composition

Here is the functional circuit for  if b then P else Q .

FP

FQ

s′

σ

σ′

s

b

then
else

if

The data output could, alternatively, be selected using the  b  output without 
memory.

The  if  circuit is easily generalized to a  case  circuit.
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Construct:  loop

Here is the functional circuit for  loop P  with  exits  in it:

FP s ′

σ

σ′

s

from 
exits

↓

↓

If there is only a single exit, the exit memory is unnecessary.
Since  while b do P  is just  loop (if b then P else exit) , its circuit is

σ
s FP

s′
σ′

b

then
else

if↓

↓

Similarly  repeat P  until b  is just  loop (P; if b then exit else ok).

Construct:  local variable

The functional circuit for local variable declaration  var z: T · P  is particularly 
easy.

z

F
s s′

σ′Pσ
z′

Into the functional circuit for  P  we must feed data lines for  z , with any desired 
initial value.  The diagram shows the final value  z′  coming from  FP , but it is 
not wanted so its wires are not needed.  A local array declaration is just like a 
local variable declaration;  there is no extra circuitry needed here for access to 
elements.

Construct:  procedure

Program declaration and calling work the same way in functional circuits as in 
imperative circuits, except that the data input must also come from the calling 
point, and the data output must be delivered back to the calling point.  Like the 
imperative version, our functional implementation of procedures does not work 
for general recursion.  Because the functional parallelism is disjoint, procedures 
cannot be called from parallel programs.  For a procedure declaration we have the 
circuit
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FP to callersfrom callers

and for each call we have the circuit

1

2

s

to declaration from declaration

σ′σ

s ′

Construct:  function

Function declaration is similar to procedure declaration.

from callers
e

to callers

Function call and return are identical to procedure call and return.  The 
programmer must ensure that calls from parallel programs are mutually 
exclusive.

The data expression  P result e  is almost identical to the imperative circuit.

FP

s

σ

s ′

e P result  e

The communication constructs are not given functional implementations for lack 
of truly shared memory in the parallel composition.  For these constructs, we 
use hybrid circuits, described next.

18.10   Hybrid circuits

In general, functional circuits are faster than imperative circuits, but imperative 
circuits occupy less space.  Each approach has merit.  We can obtain almost the 
speed of a functional circuit with almost the compactness of an imperative 
circuit by combining the two kinds within one hybrid circuit.  For example, we 
might make most of a circuit imperative, but make inner loops functional.

Hybrid circuits also allow us to use our imperative implementation of 
communication within a larger functional circuit.

To place a functional circuit within an imperative one, we must make the 
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functional circuit look imperative.  Ignoring arrays for simplicity of 
presentation, here's what we do:

F

s

σ

s′

Dσ

Cσ

The  s′  output also causes memory to change state.  As usual, only some of the 
wires to and from memory are needed.  The local memory is needed only if there 
are parallel programs.

To place an imperative circuit within a functional one, we must make the 
imperative circuit look functional.  Here's what we do:

s

I

M

s ′

σ′

σ then
else

if

! ?

?!

In effect, we make the memory (as much of it as necessary) local to the circuit.

18.11   Performance

Our two measures of performance are circuit size and execution time.  We 
measured size as the number of conjunctions, disjunctions, negations, and 
delays.  Other gates were expressed in terms of these gates;  one bit of memory 
has size  4  (we did not count the delay).  The size measure might be improved 
by choosing different primitives.  We measured time as the number of sequential 
gate delays during execution.  We measured circuits that were produced without 
any optimizations;  the results might be better if we were to optimize.  For 
example, we may find conjunctions or disjunctions with  †  or  ƒ , which can 
then be eliminated.  In any case, the performance numbers are very approximate 
and indicate only that our circuits are competitive.

We measured our imperative circuits, our functional circuits, the circuits of 
Martin [3,7], the circuits of Weber et al. [15], and the circuits of Philips [1,2].  
To obtain our results, we hand-compiled the circuits of Martin;  for details see 
[11].
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Our six test programs were chosen to use as many language features as 
possible.  They are:

Parity: computes and verifies a parity bit for 3 bits of data
Parallel: uses the parallelism and interprogram communication features
Arbiter: arbitration between two parallel programs
Counter: a 4-bit binary countdown timer and test-and-set function
Triple: a program to compute three times its input
Ring: mutually-exclusive execution of 7 parallel programs in a ring 

using Peterson's algorithm
A detailed description of the test programs and a similar analysis can be found in 
[11].

The results are listed in the following table.

TIME Parity Parallel Arbiter Counter Triple Ring
imperative 16 31 165 1091 127 2321
functional 16 25 113 799 90 3792
Martin 18 23 209 1243 148 2044

SIZE Parity Parallel Arbiter Counter Triple Ring
imperative 73 210 52 407 400 427
functional 94 413 81 886 1240 1835
Martin 98 123 76 431 385 357
Weber et al. 259 145 95 1156 657 715
Philips 96 196 79 810 597 940

18.12   Correctness

To prove that our circuits are correct, we must have a formal semantics for our 
source programs and circuits.  Here is the source semantics.

Let  t  and  t′  be the initial and final execution times, the times at which 
execution starts and ends.  If the execution time is infinite,  t′=∞ .  Let the state 
variables  x  ,  y  , ... be functions of time.  The value of  x  at time  t  is  x t .  
An expression such as  x+y  is also a function of time;  its argument is 
distributed to its variable operands as follows:  (x+y)t = x t + y t .  Let

wait   =   (t′≥t  ∧  ∀t′′: t≤t′′≤t′·  xt′′=xt ∧ yt′′=yt ∧ ...)
so that  wait  takes an arbitrary time during which the variables are unchanging.

The programming notations are defined as follows.
ok   =   (t′=t)
tick   =   (t′=t+δ ∧ wait)
(x:= e)   =   (t′=t+δ+τ ∧ xt′=et ∧ waity,z...)

where  δ ≥ ( e time)  ∧  τ ≥ (memory time) .
(P;Q)   =   ∃t′′· (substitute  t′′ for  t′ in  P ) ∧ (substitute  t′′ for  t  in  Q )
(Pα  ||  Qβ)   =   (Pα  ∧  (Q; wait)β   ∨   (P; wait)α  ∧  Qβ)
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(if b then P else Q) =   (if bt then P else Q) 
=   (bt ∧ P  ∨  ¬bt ∧ Q)

(while b do P)   ⇒    if b then (P;  while b do P) else ok
(∀x, x′, y, y′, ..., t, t′·  W   ⇒   if b then (P; W ) else ok)

⇒ (∀x, x′, y, y′, ..., t, t′·  W   ⇒   while b do P)
var z: T· P   =   ∃z: time→T· P

where  time→T  is the functions from time values (including  ∞ ) to  T  values.
Here is a simple example, in variables  x  and  y .  In this example we use 

discrete time and take  δ  to be  0  and  τ  to be  1 .
x:= x+3;  x:= x+4

= (t′=t+1 ∧ xt′=xt+3 ∧ yt′=yt);  (t′=t+1 ∧ xt′=xt+4 ∧ yt′=yt)
= ∃t′′·  (t′′=t +1 ∧ xt′′=xt+3 ∧ yt′′=yt)  ∧  (t′=t′′+1 ∧ xt′=xt′′+4 ∧ yt′=yt′′)
= t′=t+2 ∧ x(t+1)=xt+3 ∧ x(t+2)=xt+7 ∧ yt=y(t+1)=y(t+2)

In the parallel composition,  α   consists of those variables that appear on the 
left of assignments within  P , and  β  consists of those variables that appear on 
the left of assignments within  Q ;  α   and  β  must be disjoint.  The use of  
wait   is just to make the faster side of the parallel composition wait until the 
slower side is finished.  To illustrate the semantics, here is an example in 
variables  x  and  y , and discrete time with  δ=0  and  τ=1 .  In the left-hand 
program, only  x  is assigned, so only  x  is treated as a state variable.  In the 
right-hand program, only  y  is assigned, so only  y  is treated as a state variable.

(x:= 2;  x:= x+y;  x:= x+y) || (y:= 3;  y:= x+y)
= (t′ = t +1 ∧  xt′=2;  t′ = t+1  ∧  xt′ = xt+yt;  t′ = t+1  ∧  xt′ = xt+yt)

∧ (t′ = t +1  ∧  yt′=3;  t′=t+1  ∧  yt′ = xt+yt;
  t′≥t  ∧  ∀t′′: t≤t′′≤t′·  yt′′=yt)

∨ (t′ = t +1 ∧  xt′=2;  t′ = t+1  ∧  xt′ = xt+yt;  t′ = t+1  ∧  xt′ = xt+yt;
  t′≥t  ∧  ∀t′′: t≤t′′≤t′· xt′′=xt)

∧ (t′ = t +1  ∧  yt′=3;  t′=t+1  ∧  yt′ = xt+yt)
= t′=t+3  ∧  x(t+1)=2  ∧  x(t+2)=x(t+1)+y(t+1)  ∧  
x(t+3)=x(t+2)+y(t+2)

∧ t′≥t+2 ∧ y(t+1)=3 ∧ y(t+2)=x(t+1)+y(t+1)
∧ ∀t′′: t+2≤t′′≤t′·  yt′′=y(t+2))

∨ t′ ≥ t+3  ∧  (other conjuncts)
∧ t′ = t+2  ∧  (other conjuncts)

= t′=t+3  ∧  x(t+1)=2  ∧  y(t+1)=3  ∧  x(t+2)=5  ∧  y(t+2)=5
∧ x(t+3)=10  ∧  y(t+3)=5

The example has the appearance of lock-step parallelism, as though there were a 
global clock, only because, for the sake of simplicity, we used discrete time with 
constants  δ=0  and  τ=1  for all assignments.

The first formula concerning the  while   loop says that it refines its first 
unrolling.  Stated differently,  while b do P  is a pre-fixed-point of

W   ⇒   if b then (P; W ) else o k
The second formula says that it is as weak as any pre-fixed-point, so it is the 
weakest pre-fixed-point.
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The other programming constructs (channel declaration, input, output, signal 
declaration, sending, receiving, parameter declaration, argumentation) are defined 
in terms of the ones we have already defined, so we do not need to give them a 
separate semantics.  And that completes the source semantics.

The imperative circuit semantics was given with each circuit.  For example, 
the control for  ok  was

s′=s  ∧  ¬Rσ  ∧  ¬Cσ  ∧  ¬Wσ  ∧  ¬Dσ
and the control for  while b do P  was

IP
sP=(δ4(s∨s′P) ∧ b)  ∧  s′=(δ4(s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP ∧ Wσ=WσP ∧ Dσ=DσP
δ ≥ ( b time)

where  IP  is the control for  P .
Before we can prove correctness, we need one more idea, adapted from [9].  

Roughly speaking, a circuit is “busy” if it has been started and has not yet 
stopped.  Formally, define  B  as

B   =   ((s ∨ δ4B) ∧ ¬s′)
δ   ≤   (pulse time)

The delay here must be shorter than the pulse length used on the control lines 
( s  and  s′ ).  If time is discrete and  δ=1 , then for any  A

(4A) 0   =   ƒ
(4A) (t+1)   =   At

and so for busy  B
B0   =   ƒ
B(t+1)   =   ((s(t+1)  ∨ Bt) ∧ ¬s′(t+1))

To prove that a circuit is correct, we must prove
  IP ∧ M ∧ st ∧ (∀t′′· Bt′′∧4Bt′′ ⇒ ¬st′′) ∧ t′=(min t′′· t′′≥t· ∧ s′t′′)  ⇒  P

Suppose we have the control  IP  (for program  P ), and we have the memory  
M  , and we put a pulse on the start wire  s  at time  t , and we don't try to 
restart the circuit while it's busy, and we give the name  t′  to the first time at or 
after  t  when  s′  becomes  † ;  then we expect the circuit to satisfy the 
semantics of program  P .  We do not have to prove correct each circuit that we 
design;  instead, we prove that our circuit generation scheme is correct.  The 
proof is long, and we omit it, stating only two lemmas that are useful steps on 
the way to the proof:

I ∧ ¬4B ∧ ¬s  ⇒  ¬s′
which says that a circuit does not spontaneously generate  s′ , and

I ∧ ¬B  ⇒  ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ
which says that if a circuit is not busy, its Rσ , Cσ , Wσ , and  Dσ  outputs are 
all  ƒ .
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18.13   Synchronous and asynchronous circuits

There are two ways to control the timing in circuits.  One is by using delays 
calculated, or experimentally determined, to be long enough to ensure that all 
data values have settled properly.  The other way, called “delay-insensitive”, is to 
use handshaking signals that allow a data transfer to occur just when both sender 
and receiver are ready.  These solutions can be applied locally, or globally, or at 
any level in between.  The word “synchronous” is usually used to describe a 
global delay, or clock;  the word “asynchronous” is sometimes used to describe 
local handshaking.

The circuits resulting from the methods we have presented use local delays.  
But as a special case, it is possible to write a program in the form of a single 
loop, whose body is a parallel composition of assignments.

loop (x:= ex  ||  y:= ey  ||  z:= ez  ||  ...)
This program structure forces a single, common delay for all state changes;  that 
delay is in effect a global clock.  We can thus program a synchronous circuit 
when we want one.  When designing a circuit, there is little point in aiming for 
the synchronous structure, and equally little point in aiming to avoid it.  One 
chooses a program structure that is appropriate for the task, and one gets a circuit 
that accomplishes that task.  In principle, local delays should be faster than a 
single global delay.  That is because a global delay must be the maximum of all 
the local delays.  In a synchronous circuit, each state change takes as long as the 
slowest state change requires.

If we choose to make each assignment into a little procedure, the 1-2-merges 
at the calling points are an implementation of local handshaking.  We can thus 
program local handshaking when we want it.  In principle, local delays should be 
faster than local handshaking.  That is because the handshaking takes time.  A 
local delay is just long enough for the data to be ready, not long enough for the 
data to be ready and to indicate its readiness.

18.14   Conclusions

Circuit design can be done more effectively by describing the function that a 
circuit is intended to perform than by describing a circuit that is intended to 
perform that function.  A programming language is more convenient for that 
purpose than a gate-level language.  It seems quite obvious that complex circuits 
can be designed this way more easily and reliably than by low-level gate 
descriptions.  And the resulting circuits seem, from a preliminary investigation, 
to show the promise of competing successfully with hand-crafted circuits. They 
should be smaller and faster than synchronous circuits due to the absence of a 
global clock.  They should also be smaller and faster than delay-insensitive 
circuits due to the absence of handshaking.  These gains come at a price:  the 
language implementer must provide local delays.  We do not suppose it is easy 
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to provide local delays, but this price is paid only once;  circuit designers who 
use the high-level language do not need to be concerned with them.

We have compiled a sampling of programming constructs that are 
representative of many high-level languages.  Some obviously desirable 
constructs, such as modules, are missing only because they do not present any 
circuit generation problems (modules restrict the use of identifiers).  For 
programs that we compiled and simulated, and for the text of the simulators, see 
[11].

We have shown two ways to implement ordinary programs with logic gates.  
The logic gates can, of course, be implemented with electronic transistors, 
resistors, and diodes.  We could therefore bypass the logic gates, implementing 
the programs directly with transistors, resistors, and diodes.  Doing so makes 
more optimizations and more efficient circuits possible.  Ultimately, perhaps 
logic gates will have no remaining role in circuit design.
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