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Abstract.  We consider what natural language explanations are required to 
present a formalism.  We desire to be as complete as possible, leaving 
nothing implicit, and yet to keep the natural language to a minimum, 
moving as quickly as possible away from informal explanations and into 
the formalism.  We also try to keep the informal explanation as independent 
as possible of the formalism being presented.  We pay particular attention 
to scope-ignoring and scope-respecting substitution.  Variable renaming 
turns out to be a consequence of scope and extension.  We speculate on the 
possibility of recursive variable introduction.

1  Introduction

A mathematical formalism is a language for describing and reasoning about the world 
with more precision and conciseness than is possible using natural language.  How 
can we explain, or present, a mathematical formalism?  A precise and concise 
explanation is desirable, and so formalisms have been developed for the purpose of 
presenting formalisms.  There are grammatical formalisms to say how to write the 
expressions of a formalism, and there are formal meta-notations to present the rules 
for their use (often called “proof rules”).  These formalisms then need to be explained, 
so the explanation problem is not solved.  And there are some aspects of mathematical 
formalism, such as the rules for substitution, that are awkward to express formally.

We have no choice but to begin informally when we explain a formalism.  My 
goal is to be as brief and clear as possible, and to move as quickly as possible away 
from informal explanations and into the formalism.

A formalism consists of expressions, which are used to express values.  I consider 
that values are in the application domain;  for example, the values may be amounts of 
water, or voltage, or frequency of vibration, or guilt and innocence.  Other people may 
consider that values are abstract, mathematical objects, although it is unnecessary and 
unhelpful to postulate such abstract objects.  For this essay, either viewpoint is 
acceptable;  all I need is that the expressions of a formalism express values.

As an economy of speech, we say “ 2+3  has value  5 ” to mean “expression  2+3  
expresses the same value as expression  5  expresses”.  In other words, we speak as 
though simple expressions are values.

With that meagre beginning, we can already make some key definitions.



Consistency: no expression expresses more than one value
Completeness: every expression expresses a value
Expressiveness: every value is expressed by an expression
Uniqueness: no value is expressed by more than one expression

Consistency is essential;  completeness is not.  Expressiveness is desirable;  
uniqueness is not.  These definitions precede the choice of formalism and the choice of 
application domain;  we have not yet said whether we will have boolean expressions, 
and we have not yet said whether we are expressing truth values.

As simple as these definitions are, they already raise questions of definedness and 
partiality that I would prefer to avoid.  Whether 0/0 has no value, or has a value but 
we cannot say what it is, is a sterile argument.  It is of no interest whether an 
expression expresses a value if we cannot determine the value, so I propose to reword 
the definitions as follows.

Consistency: at most one value can be determined for each expression
Completeness: at least one value can be determined for each expression
Expressiveness: at least one expression can be determined for each value
Uniqueness: at most one expression can be determined for each value

2  Evaluation Rules

How do we determine the value of an expression?  Even before saying what our 
expressions and values are, we can already show some examples of rules for 
determining the value of an expression.

Direct Rule:  An expression may be given a value by physical means, or by other 
means outside the formalism.

For example, by marking numbers along a stick we give them length values.  We 
might say that we will use    to express truth and    to express falsity.  This is the 
way a formalism is applied.

Table Rule:  If the values of all subexpressions of an expression are known, then 
value tables can be used to determine its value.

If we decide to introduce boolean expressions, and to use them to represent truth 
values, we might like to use “truth tables” to say how to evaluate them.  For 
example, one of the entries for  =  will tell us that  =   has value   .  Value tables 
can similarly be used for the expressions of ternary algebra.  For larger algebras tables 
are too cumbersome, though they could be used for a portion of a large algebra.

Completion Rule:  If the values of some subexpressions of an expression are 
unknown, and all ways of assigning them values give it the same value, then it 
has that value.



For example, if we are presenting boolean algebra, this rule tells us that  x∨¬x  has 
value   , and that  x∧¬x  has value   .  Should we say explicitly that when a 
subexpression occurs more than once, all occurrences must be assigned the same 
value?  When there are infinitely many values, it is not always clear how to determine 
if all assignments give the same answer;  thus we enter the classical/constructive 
debate.  Some people like this rule, and some dislike it;  I am not taking a side, but 
only using it as an example.

Consistency Rule:  If it would be inconsistent for an expression to have a 
particular value, then it has another value.  More generally, if it would be 
inconsistent for several expressions to have a particular assignment of values, then 
they have another assignment of values.

Again using the example of boolean algebra, and assuming  ⇒  has been defined 
(perhaps by a value table), this rule gives us modus ponens:  if  x  and  x⇒y  have 
value   , then  y  has value   .  Assuming  ¬  has been defined, this rule similarly 
tells us that if  ¬x  has value   , then  x  has value   .  Assuming  =  has been 
defined, it also says if  x=y  has value   , then  x  and  y  have the same value.

Transparency Rule:  An expression does not change value when a subexpression is 
replaced by another with the same value.

For example, if  x  and  y  have the same value, then  x∧z  and  y∧z  have the same 
value.  This rule is sometimes presented as “substitution of equals for equals”;  the 
version here is more general because it does not assume we have an  =  operator.

Indirect Rule:  An expression whose value cannot be determined by the other rules 
may be given a value by saying that it has the same value as another expression 
whose value is already known.

Axioms, or laws, are boolean expressions to which we give value   ;  the Indirect 
Rule is a generalization of a rule that says it is permissible to use axioms.  Indeed, it 
is more than permissible;  this is the route by which we stop explaining in 
misinterpretable English, and start to use the formalism we are trying to present.  The 
Indirect Rule, as it is worded here, says that it must not be used to introduce 
inconsistency.

Do we need all these rules, or can we just use the Indirect Rule?  The Table Rule is 
just a special case of the Indirect Rule in which some expressions are given values by 
means of a table, so we don't need it;  but it is a convenient way to get started, and it 
wasn't problematic.  The Completion, Consistency, and Transparency Rules were 
problematic, but they cannot be eliminated in favor of the Indirect Rule.  Axioms like

x ∨ ¬x
x ∧ (x ⇒ y) ⇒ y
x=y ⇒ fx=fy

are special cases;  they do not cover all that the evaluation rules cover.



3  Variables and Instantiation

For the rest of this essay, I assume that the formalism being presented includes 
variables.  Not all formalisms do;  combinatory logic [2] claims that it does not.  The 
problems that I now address apply to those formalisms that include variables.  

We could say that identifiers like  x  are used to stand for variables;  identifiers are 
expressions, and variables are objects being expressed by them.  Some programming 
languages insist on the dichotomy between identifiers and variables.  I consider that a 
variable is a kind of expression;  in other words,  x  is a variable.  Expressions 
represent values, and a variable represents an arbitrary value.  (There may be more than 
one type of value, but I do not consider typing in this essay.)  A variable can be 
replaced by an arbitrary expression.  Replacing a variable by another expression is 
called instantiation.  Three points must be explained:

• We sometimes have to insert parentheses around expressions that are replacing 
variables in order to maintain the order of evaluation.

• When the same variable occurs more than once in an expression, it must be 
replaced by the same expression at each occurrence.

• Different variables may be replaced by the same or different expressions.

With instantiation, we might like to add one more evaluation rule that requires natural 
language.

Instance Rule:  If the value of an expression can be determined, then all its 
instances have that same value.

For example, if  x=x  has value   , then  0/0  =  0/0  has value   .

4  Scope

The final complication that requires some natural language is the introduction of local 
scope.  The bracketing operator  〈x|    |x〉  encloses an expression, and introduces local 
variable  x  within the brackets.  For example, within

〈n| n+m |n〉
n  is local but  m  is nonlocal.  As an abbreviation, we may omit the local variable 
and vertical bar whenever the local variable appears first inside the scope.  For 
example, the preceding expression may be written

〈n+m〉
Instantiation is now more complicated by the following two points:

• Replace nonlocal variables only.

• Do not place a nonlocal variable where it will appear to be local.



The preceding paragraph is misleading;  specifically, the words “local within” and 
“nonlocal within” are ill-chosen.  (There are dangers lurking in even the most 
innocent-looking sentences.)  A variable may be local to one scope, but nonlocal to 
another inner nested scope, so it is misleading to say it is “local within” the outer 
scope.  Similarly, a variable may be nonlocal to one scope, but local to another inner 
nested scope, so it is misleading to say it is “nonlocal within” the outer scope.  We 
who know about locality and nested scopes tend to read our knowledge into the 
explanations;  the challenge is to make the explanations clear to someone who doesn't 
already know.

Scope brackets were called an operator, applying to an operand.  And they have an 
inverse operator.  The axiom relating scoping and unscoping is called the

Scope Law 〈x| E |x〉 x     =     E

The following, numbered (0) for later reference, has the same form as the Scope Law.
(0) 〈n| n+m |n〉 n     =     n+m
Notice that  n  is used both locally and nonlocally;  it is a kind of pun.  The reason 
for the pun is that the Scope Law explains what it means to cross a scope boundary.  
Now we instantiate (0) by replacing  n  with  a+1 , but remember:  instantiation 
replaces only the nonlocal occurrences of  n .
(1) 〈n| n+m |n〉 (a+1)     =     a+1+m
From (0) we could replace  n  by  m  to get
(2) 〈n| n+m |n〉 m     =     m+m
but from (0) we cannot replace  m  by  n  because we would have to place a nonlocal  
n  where it would appear to be local.

The Scope Law provides us with a notation for substitution (or instantiation).  We 
can read (1) as follows:  replace  n  in  n+m  by  a+1  to get  a+1+m .  It would be 
pointless to introduce another notation for substitution and then equate it to the one 
we already have.  We can write (0), (1), and (2) more briefly as follows.
(0) 〈n+m〉 n          =     n+m
(1) 〈n+m〉 (a+1)     =     a+1+m
(2) 〈n+m〉 m         =     m+m

We went from (0) to (1) and from (0) to (2) by means of ordinary instantiations, 
obeying all the rules.  But how did we get from the Scope Law to (0)?  All 
occurrences of  x , both local and nonlocal, were replaced by  n , contrary to the rules.  
And when the first  E  was replaced by  n+m , an  n  was placed in a context where it 
became local, again contrary to the rules.

There are two kinds of variables:  syntactic and semantic.  Or if you prefer, we can 
say equivalently that there are two kinds of substitution:  syntactic and semantic.  
Syntactic substitution (substitution for a syntactic variable) ignores scope;  semantic 
substitution (substitution for a semantic variable), also called instantiation, respects 
scope;  that is the difference.  If we do not have local scope, the two kinds are the 
same.  If we do have local scope, we must have the scope-respecting substitution, for 
that is the reason we have local scope.  The Scope Law expresses scope-respecting 
substitution, but to use the law we must use the scope-ignoring substitution.  The 
scope-ignoring substitution is limited to this one use only.  All variables are 



semantic, all substitutions are scope-respecting, with the single exception of the law 
that gives us scope.

5  Extension and Renaming

The Extension Law looks very similar to the Scope Law.

Scope Law 〈x| E   |x〉 x     =     E
Extension Law 〈x| Ex |x〉        =     E

The scope brackets are really just an alternative to lambda notation.  The Scope Law 
is a remarkable version of Church's β-rule;  the Extension Law is the ordinary version 
of his η-rule;  missing is his α-rule for renaming local variables.  One reason we need 
renaming is so that instantiation will not place a nonlocal variable where it will 
appear to be local.  Without any more awkward English, we have renaming as a 
consequence of the Scope and Extension Laws.  Instantiate the Extension Law by 
replacing  E  by  〈y| Ey |y〉  to obtain

〈x| 〈y| Ey |y〉x |x〉     =     〈y| Ey |y〉
On the left side, the inner scope can be applied to its argument to obtain

〈x| Ex |x〉     =     〈y| Ey |y〉
This equates scopes with different local variables.

Other ways of introducing a local variable, such as quantifiers, can all be treated 
uniformly as operators on functions, so we need not consider them separately.

6  Function and Domain

We next present functions, but first we introduce two operators:  colon and arrow.  
The colon (inclusion) is a reflexive, transitive, antisymmetric operator with a boolean 
result.  For example, 

3: 3 3: nat
both have value   .  For details see [0] or [1].  The arrow (guarded expression) 
requires a boolean to its left;  for example  x<5 →  7  (if  x  is less than five then 
seven).  Its law  →x  =  x  says that if the guard is   , we can drop it;  otherwise 
we must carry it around.  When simplifying the right operand of a guarded expression, 
we can assume the left operand has value    for the same reason that we can assume 
an antecedent has value    when simplifying the consequent of an implication.  For 
details see [3].

A function is a scope whose operand is a guarded expression whose left operand is 
an inclusion whose left operand is the local variable.  For example,

〈n| n: nat → n+m |n〉
or, more briefly,

〈n: nat → n+m〉
Starting with the Scope Law, we can syntactically (ignoring the scope rules) 

replace  x  with  n  and  E  with  n: nat → n+m  to obtain



〈n: nat → n+m〉 n     =     n: nat → n+m
Now we instantiate by replacing  n  with  3  (respecting the scope rules):

〈n: nat → n+m〉 3     =     3: nat → 3+m
Then  3: nat  is simplified to   , and   → 3+m  is simplified to  3+m , and the 
Scope Law has told us the result of applying  〈n: nat → n+m〉  to  3 :

〈n: nat → n+m〉 3     =     3+m
The domain of a function is obtained by the domain operator  ∆ .  Here is the law:

Simple Domain Law ∆〈x: D → Rx〉      =     D

We can look at a function as a sort of binary tree data type, with constructor and 
destructors as follows:

Constructor 〈x:      →     〉 
Destructors ∆〈x: D → Rx〉      =     D

〈x: D → R〉 x       =     R                  (if  x: D )

As simple as it is, the Simple Domain Law has a problem.  Suppose we add the 
reasonable law

a → (b → x)  =  a∧b → x
which gathers guards into a conjunction.  Then we have an inconsistency.  The 
Simple Domain Law does not look deeply enough into the function.  So define  Γx  
(the guard of  x ) as follows:

Γx        if  x  is not guarded
Γ(a→x)    =    a ∧ Γx

The phrase “if  x  is not guarded” is the kind of informal mathematics that often passes 
without comment.  In this essay, it must be noted that the phrase is hopelessly 
inadequate:  no arrow appears in  fx , yet its guard may not be   .  Perhaps  Γ  has to 
be defined by cases over the syntax of expressions.  But pressing bravely onward, we 
can now define the domain of a function by means of the temporarily named

New Domain Law x: ∆f    =    Γ(fx)

If we have a guard operator, perhaps we don't want a domain operator;  they are 
performing approximately the same job.

The Simple Domain Law has another limitation:  it can only be instantiated by 
domains that do not mention  x  (otherwise we place a nonlocal variable where it 
appears to be local).  When the function was defined, there was no prohibition against 
a domain that mentions the local variable.  If the domain does mention the local 
variable, how do we make sense of it?  Is this freedom useful?  Is it harmful?

The function  〈x: Dx → Rx〉  introduces a local variable  x , and it also introduces a 
local law  x: Dx  which can be used within the body  Rx .  A law is just a boolean 
expression that has been assigned the value   ;  there is no reason why a law 
shouldn't mention  x  several times.  For example,

〈x: x2 → x+1〉
introduces local variable  x , and local law  x: x2 , which says that  x  is included 



among its squares.  In other words,  x  might be  0  or  1 , so that is the domain.  The 
New Domain Law works for  〈x: x2 → x+1〉 ;  it says the domain is the solutions of  
x: x2 .

If the law introduced by a function has no solutions, as in
〈x: x+1 → x+1〉

we have a function with an empty domain.  Application of such a function results in a 
guarded expression with guard   , which cannot be eliminated.  This guard protects 
us from using the result, so there is no harm.  Far more dangerous are the functions 
whose laws have too many solutions;  for example

〈x: x → x+1〉
If this freedom leads inevitably to Russell's paradox, we may have to impose the 
restriction that the domain must not mention the local variable, making the domains 
predicative, creating a Russell type hierarchy for functions.  But there is some hope 
that we may not need to impose that restriction;  we have successfully interpreted 
recursive data type definitions, and we no longer live in the Russell hierarchy for sets.

7  Conclusion

When we explain a formalism, the most basic rules of the game need to be explained 
in natural language, after which the rest can be presented formally as laws.  If we are 
building a calculator (or prover), the natural language parts become hard-coded 
program, while the laws can be data in an easily changed table.  It is desirable to be as 
complete as possible, leaving nothing implicit, and yet to keep the natural language 
to a minimum, and to keep it as independent as possible of the formalism being 
automated.  Up to scopes, we managed to be independent of all types and operators — 
even booleans.  (This independence was motivated by work on Unified Algebra [1], in 
which the booleans and numbers are unified.)

To explain scope, one might take a global view, or a local view.  In the global 
view, scopes are considered to be a syntactic convenience.  They are explained away by 
renaming all variables uniquely, then flattening.  This makes the meaning of an 
expression depend on its context;  we must first have an entire expression before we 
can work with any of its subexpressions.  In this essay, I have taken the local view, 
in which the meaning of an expression is independent of its context.  Scopes are 
explained by explaining how to cross a scope boundary, without any need to know 
what other scopes it is nested within.

Scope formation is by means of an operator with an inverse.  The Scope Law 
provides a notation for ordinary, scope-respecting substitution.  All substitutions are 
scope-respecting, with the sole exception of the instantiation of the Scope Law.  Even 
variable renaming turns out to be a consequence of the Scope and Extension Laws.

The essay finishes with the highly speculative suggestion that a function is just a 
scope applied to a guarded expression, and that the domain expression in a function 
can mention the local variable.  This suggestion may prove fruitless, or it may be as 
useful as dependent types;  it is too soon to tell.
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