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Segment 1

[talking head] Hello.  I'm Eric Hehner.  I'm at the University of Toronto, Canada.  And I 
have the pleasure to give this short course on digital circuit design.  This is the first of four 
online lectures.  One of the nice things about an online lecture is that you can watch it on a 
computer or any portable device anytime and anyplace you want to.  You can stop anytime, 
and resume later.  You don't have to play it straight through as though it were a classroom 
lecture. You can and should pause at any point where you need to think about what was just 
said before you go on.  Some things might go by too fast, but you can replay anything you 
want to see again.  I hope you enjoy the course, and benefit from it.

[2] The word “circuit” means a closed loop, like a [3] circle, but not necessarily 
round.  It's used for electrical things because the electricity follows a [4] closed path from a 
source, such as a battery, through whatever needs electricity to work, such as a light bulb, 
and back to the source.  That's why an [5] electrical cord has two wires in it.  At any instant, 
one wire goes from source to device, and the other wire goes back.  In the case of 
alternating current, they keep switching directions, but still, the two wires make a circuit.  If 
the cord has three wires, the third wire is a ground wire just for safety;  it isn't part of the 
circuit.

[6] The word “digit” means finger.  And since people sometimes count on their 
fingers, it also means a [7] number symbol.  A digital circuit is a circuit that has distinct, 
discrete states.  For example, when this clock changes state, the final digit will change from 
5 to 6.  As far as we can tell, or maybe I should say as far as we care, there's no halfway, 
when the state is halfway between 5 and 6. [8] This round clock is not digital because the 
hands move continuously.  If a hand is somewhere, and then later it's somewhere else, then 
there was a time when it was halfway between.  Well, if you look very closely, at the level 
of elementary particles, and at a time scale of 10 to the power minus 43, you will see 
quantum behavior, which is not continuous.  But above that scale, the hands seem to move 
continuously.  This course is not about circuits with continuous behavior.  It is about the 
design of digital circuits.

[9] I want to start at the very beginning, with elementary particles.  These are the 
protons, neutrons, and electrons that make up atoms.  Protons are positively charged, 
electrons are negatively charged, and neutrons are neutral because a neutron is made of a 
proton and an electron.  The protons and neutrons are the nucleus of an atom, which means 
they are at the center of the atom.  Popular pictures of atoms show the electrons as little 
balls orbiting the nucleus, like planets orbiting a sun.  But that's not even close to true.  The 
electrons are around the atom, but they are not balls, and they don't orbit. [10] Sometimes 
physicists say to think of an electron as a cloud, and that's closer to true, but it's a probability 
cloud, which is not something we are familiar with in our ordinary experience.  Electrons 
come in several layers, or shells, around the nucleus.  And it's the outer shell that decides the 
electrical properties of the atom.  If the electrons of the outer shell are bound strongly to the 
atom, then it's an electrical resistor.  If the electrons of the outer shell are weakly attached to 
the atom, so they can move from atom to atom, then it's an electrical conductor.  [11] A good 
example of a conductor is copper, which is what wires are made of, and [12] a good 
example of a resistor is silicon, which is what sand and glass and ceramics are made of.

The way to make a [13] semiconductor is to start with some silicon, heat it until it 
melts, then pour it onto a flat surface in wafers, which are like thin pancakes in size and 
shape, and let it cool.  If the room is free from dust and vibrations, the silicon cools into a 
crystal structure, which is what this picture is trying to show.  Each Si is the nucleus of a 
silicon atom.  And the dots are supposed to be electrons in the outer shell.  There are 4 
electrons in the outer shell of a silicon atom, but in the crystal structure, each outer electron 
belongs equally to a pair of atoms.  They are shared electrons.  They are strongly bound in 
their place in the structure, so a silicon crystal wafer is a resistor.  The picture is wrong in 
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several ways.  The crystal structure is 3 dimensional, but this is a 2 dimensional picture.  
And a nucleus isn't a pair of letters.  And electrons aren't dots.  What the picture shows 
correctly is that it's a regular structure, and that there are 4 electrons in the outer shell of 
each silicon atom, and these electrons are shared between neighboring atoms.  To make a 
semiconductor, some of the silicon atoms are replaced by phosphorus atoms, and some are 
replaced by boron atoms.  Watch closely: [14] there.  That's called doping.  The phosphorus 
atoms have 5 electrons in the outer shell.  The extra electron is there, but it doesn't have a 
place in the crystal structure, so it is weakly bound to its atom.  That's called negative 
doping.  The boron atoms have 3 electrons in the outer shell, so there's a hole, which means 
a place for another electron, in the crystal structure.  That's called positive doping. The 
doping makes extra electrons that are weakly bound and easily movable, and holes which 
are places for the extra electrons to go.  That's a semiconductor.  Now let me remove the 
silicon atoms from the picture [15] so we can concentrate on the doped regions.  An adjacent 
pair of positively and negatively doped regions is called a [16] diode.  The extra electrons 
from the phosphorus atoms, which have no place in the structure, wander around, and when 
they come to places around the boron atoms where there are holes, they stay there. [17] But 
they are still weakly bound to the boron atoms because there's no corresponding proton in 
the boron nucleus.

Suppose we [18] connect the negative side of the diode to a source of electrons, and 
the positive side to a destination for electrons.  Electrons flow from the source of electrons 
to the phosphorus atoms because they are attracted by the protons that don't have electrons.  
And then electrons move across the boundary from the phosphorus atoms to the boron 
atoms just as before.  And electrons flow from the boron atoms to the destination for 
electrons.  So there is a [19] flow of electrons from left to right in the picture.  That's an 
electric current.

Now let's put a [20] source of electrons on both sides.  All the places for electrons 
get filled, but there's no further place for them to go, so there's no electric current.  And if we 
[21] remove the electrons from both sides, now there's a place for them to go, but no source, 
so no current. Finally, if we [22] have a source on the right side, and a destination on the left 
side, the extra electrons from the phosphorus atoms still find places around the boron atoms, 
but they don't get replaced, and they don't have any further place to go, so there's no current.

A diode is a one-way gate for electric current.  It allows electrons to flow through it 
from left to right, but not from right to left in this picture.

Here's [23] a simpler, one-dimensional picture of some electrons, with a hole or 
missing electron in one place.  Suppose [24] the electron to the left of the hole moves into 
the hole. [25] There.  Now suppose [26] again the electron to the left of the hole moves into 
the hole. [27] There.  We see [28] electrons flowing from left to right, and we see [29] the 
hole flowing from right to left. Now [30] here's another line with electrons and holes placed 
randomly, and a source of electrons on the left side, and a destination for electrons on the 
right side.  A source of electrons is the same thing as [31] a destination for holes, and a 
destination for electrons is the same thing as a source of holes. [32] Whenever there's an 
electron to the left of a hole, the electron will move [33] into the hole.  The electrons move 
from left to right, and the holes move from right to left.  And [34] again, when an electron is 
to the left of a hole, the electron and hole will switch places, and if there's a hole at the left 
end, it will get filled from the electron source, or to say the same thing differently, the hole 
will go into the destination for holes.  Likewise at the right end, an electron will go into the 
destination for electrons, or to say the same thing differently, a new hole will be supplied. 
[35] There.  You see that when we talk about electric current, we could talk about electron 
flow in one direction, or we could talk about hole flow in the other direction.  I don't know 
why, but when electrical engineers talk about which way electricity flows, they are talking 
about the flow of holes.
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That's the basics of electricity.  Here [36] are the symbols used for drawing electrical 
circuits.  A destination for electrons, or a source of holes, which is also called a positive 
voltage, or high voltage, or power, is this symbol. [37] A source of electrons, or destination 
for holes, or negative voltage, or low voltage, or ground, is this symbol.  The difference 
between them is typically about 5 volts.  It's too bad we have so many different words to 
mean the same thing.  I might say power, or positive, or high voltage, or up, and they all 
mean the same.  I might say ground, or negative, or low voltage, or down, and they all mean 
the same.  A [38] conductor is a line, like a wire.  A [39] resistor is a zig zag line.  A [40] 
diode symbol looks like this.  Holes can flow from left to right, but not from right to left.  To 
say the same thing differently, a diode can support a voltage difference when the left side is 
ground and the right side is power and no current flows.  But it can't support a voltage 
difference with power on the left and ground on the right;  that's when current flows until the 
two voltages are equal.  A [41] transistor symbol looks like this.  A transistor is three doped 
regions in a row.  The regions could be positive negative positive, or they could be negative 
positive negative.  When the middle region has one voltage, current can flow through the 
transistor in either direction.  When the middle region has the other voltage, current cannot 
flow through the transistor.  So a transistor is an on-off switch.

[42] Before we go any further toward digital circuit design, I should tell you the 
designer's main trick.  It's called binary abstraction.  That means there are only two voltages, 
the ones we call power and ground.  At any place in a circuit, the voltage is either power or 
ground.  It can change over time, and that's what this picture shows.  Time goes from left to 
right.  At some particular place in a circuit, the voltage might start off at ground, and then 
after a time, it suddenly changes to power, and then later it changes back to ground, and so 
on.  Each time it goes up and later goes down is called a [43] pulse, so there are two pulses 
in this picture.  That's not what really happens.  What really happens looks more like this 
[44].  But the binary abstraction is to pretend it's the top picture.  And it's the electrical 
engineers' job to make it be as much like the top picture as possible.  That's so we can use 
binary algebra to design digital circuits, which is a lot simpler than continuous calculus, 
which we would need if we had to describe the bottom picture.

Now [45] we can look at some circuits that use binary abstraction.  The simplest 
circuits are called gates, and this one is an or gate.  a and b are the inputs, and c is the 
output. [46] Suppose a and b are both positive, meaning they are at the high voltage.  Then c 
has to be positive because the diodes cannot have a positive voltage on their left and a 
negative voltage on their right.  Since c is positive, a small current flows through the 
resistor, but c is resupplied with holes from a and b.  So c stays positive.  [47] Now suppose 
a is positive and b is negative, meaning it's at the low voltage.  c still has to be positive 
because the a diode cannot have a positive voltage on its left and a negative voltage on its 
right.  But the b diode can have a negative voltage on its left and a positive voltage on its 
right.  If a is negative and b is positive, the result is the same. [48] Now suppose both a and 
b are negative.  According to the diodes, c could be either positive or negative.  But if it's 
positive, a current will flow through the resistor until it's negative, and it is not resupplied 
with holes from a and b, so it stays negative.  So that's how it works electrically.  If either a 
or b or both are positive, then c is positive. If both are negative, then c is negative.  Now we 
make the binary abstraction, and its symbol is [49] this.  An or gate can have more than two 
inputs.  If one or more inputs are positive, the output is positive, and if all inputs are 
negative the output is negative.

The next gate is [50] the and gate.  Again the inputs are a and b, and the output is c.  
[51] If both inputs are positive, the diodes allow c to be either positive or negative.  But if 
it's negative, a current will flow through the resistor until it's positive, and then it will stay 
positive.  [52] Now if b becomes negative, the b diode won't allow a voltage difference with 
negative on the left and positive on the right, so c becomes negative.  This causes a small 
current to flow through the resistor, but the b diode keeps c negative.  The result is the same 
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if a is negative and b is positive, or if both a and b are negative. [53] So, if both a and b are 
positive, c is positive.  If one or both of the inputs are negative, the output is negative.  After 
the binary abstraction, [54] this is its symbol.  An and gate can have more than two inputs.  
If all inputs are positive, the output is positive, and if one or more inputs are negative the 
output is negative.

[55] A not gate can be built from a transistor and a resistor.  If the input is positive, 
the output is negative, and if the input is negative, the output is positive.  When the input is 
positive, the path between ground and output is conducting, so the output is at ground 
voltage.  When the input is negative, the path between ground and output is not conducting, 
so the current through the resistor pulls the output up to a positive voltage.  [56] After we 
make the binary abstraction, the symbol for a not gate is a circle.

[57] The last gate we look at is the delay.  Its symbol is a triangle.  Its output is the 
same as its input, but delayed. [58] That's what this diagram is trying to say.  The horizontal 
axis is time, and the vertical axis is voltage.  The top graph is a random input, and the 
bottom graph is the output, which looks just like the input, but shifted to the right, which 
means delayed in time.  You can build a delay gate by putting an even number of not gates 
in a row.  If you want a lot of delay, use a lot of not gates;  if you want a little delay, use a 
few not gates.  We'll take a break here, and resume with the next segment whenever you feel 
like it.

Segment 2

[59] We have talked about electrons flowing in one direction, and holes flowing in the 
opposite direction.  Now I want to talk about information flow, which is the direction from 
inputs to outputs.  That's not the same as electron flow, and not the same as hole flow. [60] 
What makes something an input is that you choose its value.  What makes something an 
output is that you measure its value.  Sometimes we show the direction of information flow 
with a little arrow. [61] We can join wires together, and we can have information flow from 
one of the branches to the other branches, like this.  You choose what a is, and then you 
measure b and c and you find that they are the same as a. [62] But you cannot have two 
inputs joining to make one output.  That's because you can choose different values for a and 
b, and then c would have to be both of those values, and that's impossible.  If you want to 
join two inputs into one output, you have to use a gate:  either an and gate or an or gate.  
Then you know what the output is for each combination of inputs. [63] Sometimes 
information paths have to cross each other.  When they do, they are not connected.

[64] Now we are ready for our first circuit, which is called a multiplexer.  Every time 
we show a circuit, we show two pictures.  The first picture is a box, and it shows what the 
inputs and outputs are, and in the box there are words or symbols to say what the function of 
the circuit is.  A multiplexer has three inputs, and in this picture they are labeled x, y, and z.  
And there's one output, labeled q.  If x is positive, then q has the same value as y.  If x is 
negative, then q has the same value as z.  You can think of x as being like a knob, and when 
you turn it one way, y is connected to q, and when you turn it the other way, z is connected 
to q.  The other picture fills in the box, so we know how the circuit is built.  Since there are 
three inputs, there are 2 to the power 3 input combinations.  And the only way to see that the 
circuit is a correct implementation of a multiplexer is to look at all 8 input combinations, 
and see what the output is for each of them.  So right now you should pause this lecture and 
check each combination of inputs.

[65] The next circuit is the demultiplexer.  It has 2 inputs x and y, and 2 outputs q 
and r.  If x is positive, then q is the same as y, and r is negative.  If x is negative, then r is the 
same as y, and q is negative.  Again, x is like a knob, and when it is turned one way, y is 
connected to q, and when it is turned the other way, y is connected to r.  On the right side, 
we have its implementation.  This time there are only 4 input combinations to check.  So 
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pause and check them.
[66] Now we have one of the most interesting circuits in all of digital circuit design: 

the flip-flop.  Input d is the data input, and input c is the control input.  When the control 
input is positive, the output is the same as the data input.  When the control input is 
negative, the output remains constant.  On the right side, you see the implementation.  It has 
a multiplexer and a delay. When the control input is positive, the multiplexer output q is the 
same as the data input. When the control input is negative, the multiplexer output q is the 
same as its “else” input.  The interesting thing is that [67] the output is fed back through the 
delay to the “else” input of the multiplexer.  This is called a feedback loop.  So the “else” 
input is what q was a moment earlier.  So q is what it was a moment earlier.  In other words, 
q stays the same as it was.  We have to have [68] the delay because without it, there's no 
constraint on output q when the control is negative.  The output could be either positive or 
negative.  But with the delay, the output has to stay the same as it was.  But a multiplexer is 
not instant;  it involves a tiny delay, and that delay is enough.  The delay in the picture just 
represents the delay already present in the multiplexer.

[69] Here's what happens.  c and d are inputs, so I can make them be anything I 
want. [70] Initially, c is positive, so q has to be the same as d. [71] Then c falls.  And while 
it's down, q has to be unchanging. [72] When c goes back up, q has to be what d is, which is 
up for a moment, and then goes down and up a couple of times, with q doing the same. [73] 
Then c falls again.  At that instant, d happens to be down, so q stays down at least until the 
next time c goes up.  And so on.

[74] A flip-flop is 1 bit of memory, and memory is implemented by a feedback loop.  
The flip-flop is remembering what d was the last time c was up.

This flip-flop is called a “sensitive” flip-flop, which means that the output is the same 
as the data input whenever the control input is positive.  In the picture on the left, the little 
square box at the control input means “sensitive”.

[75] Our next two circuits are called edge triggers.  The first one is called a rising 
edge trigger, and the second is called a falling edge trigger. [76] The box picture of a rising 
edge trigger has an up arrow in it.  Its output, as you can see from the circuit on the right, is 
up just when the input is up and was down a moment ago. [77] The timing diagram shows it 
best.  Whenever the input has a rising edge, the output is up for a moment.  The delay has to 
be just long enough to detect the rising edge, but no longer. [78] A falling edge trigger is 
similar.  Its box has a down arrow.  Its output is up just when the input is down and was up a 
moment ago. [79] Its timing diagram shows the short pulses at each falling edge of the 
input.

We can use edge triggers with various circuits, and [80] here is a rising edge 
triggered flip flop.  Its picture, on the left, has an up arrow in a box at the control input.  The 
circuit on the right is a sensitive flip flop, so it has an empty box at the control input, and a 
rising edge trigger on the control input.  Let's look [81] at the timing diagram.  At the start, 
left side, we see that the c and d inputs are both down, but that doesn't tell us what the q 
output is.  We don't know q until [82] the first rising edge of c.  And then d is down, so q is 
down from then on, at least until [83] the next rising edge of c.  And then d happens to be 
up, so that means q is up until the next rising edge of c [84].  And then d is up, so q stays up 
until the next rising edge, and so on.

[85] Now here is a falling edge triggered flip flop.  It is built from a sensitive flip 
flop, a falling edge trigger, and a delay.  The delay is just so that when the c input falls, the 
output q will be what d was just before c fell.  [86] Here's the timing.  We don't know what q 
is until [87] the first falling edge of c.  And then d is up, so q is up until the [88] next falling 
edge of c.  Now d is down, so q is down until [89] the next falling edge.  And d is up here, 
so q goes up, and so on.

[90] Now I want to show you two merge circuits.  The first one is called a 1-2-
merge.  It emits a pulse on its output when it receives pulses on its inputs in the right order.  
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If there's a pulse on a first, and then a pulse on b second, then there's a pulse on q. [91] In 
the implementation on the right, I have labeled paths r and big A to help explain how it 
works.  The circuitry between q and r is an edge-trigger.  r is up just at the falling edge of q.  
But mostly it's down.  So big A is up if input a is up, or was up.  See the feedback loop?  So 
big A remembers that there has been a pulse on input a.  Now when input b goes up, there's 
a pulse on the output q.  And at the end of that pulse, r is momentarily up, so big A goes 
down, ready for the next pair of input pulses.  You should stop and look at this circuit a little 
more to satisfy yourself that it works.

[92] The other merge circuit is a symmetric merge.  There's a pulse on the output 
when there have been pulses on both inputs, no matter which order they came in.  In the 
implementation, big A remembers if there has been a pulse on input a.  Big B remembers if 
there has been a pulse on input b.  When there has been a pulse on both, there's a pulse on 
output q.  And then, at the falling edge of q, r is up for a moment so that big A and big B will 
go down, ready for another pair of input pulses.  You might need to look at this circuit a 
little longer too.

[93] Now I have to make sure you know how numbers are represented in binary.  
What we're all used to is decimal representation, which uses ten digits to represent numbers.  
Binary uses two digits.  A binary digit is also called a [94] bit.  When we write a number in 
[95] decimal, the rightmost digit is the units, the digit to its left is the tens, the digit to its left 
is the hundreds, and so on.  Each digit is multiplied by a power of ten, and then we add. [96] 
Binary works the same way, except it's powers of two.  These powers, these exponents, give 
us the way we number the digits, [97] from right to left, starting at 0.  That's enough for this 
segment.

Segment 3

[98] Here's a useful convention for drawing circuits.  A double line means some number of 
pathways, without saying how many.  Could be one, could be a hundred.  So this picture 
really means a picture like [99] this one, for example.  And sometimes, but not always, a 
picture like this can be [100] broken up into separate circuits, one for each pair of input and 
output. [101] In this picture at the top left, the a input and the b output are double lines, so 
they represent some number of inputs and outputs, and again I've made it be 4 inputs and 4 
outputs.  The c input is just one line, so it's just a single input.  The circuit on the top might 
be composed of several circuits, each one with one of the a inputs and one of the b outputs, 
and all of them with the c input. [102] Now here's a circuit with an a input and a b input and 
a c output, and all of them are double lines, meaning some number of inputs and outputs.  
And perhaps this circuit is composed of several circuits, each one with one of the a, b, and c 
paths.  We'll be using pictures like this in the rest of the course.

[103] This next circuit compares two bits.  The output is positive if the inputs are 
unequal, and negative if they are equal.  On the right, you see that c is positive if either a is 
positive and b is negative, or, that's the or gate, or a is negative and b is positive.  This 
circuit to see if two bits are unequal is also called “exclusive or”, and “parity”, and “addition 
modulo 2”.  That's a lot of different names for unequality.  Now [104] let's put a bunch of 
these circuits beside each other so we can compare many pairs of bits and see which pairs 
are unequal.  That's called “bitwise unequality”.  Although the picture doesn't show it, there 
is the same number of a inputs as b inputs, and the same number of c outputs.

[105] If we want to compare two numbers to see if they are unequal, we need all the 
inputs for each of the two numbers, but we just want one bit of output that's positive when 
the numbers are unequal, and negative when they are equal.  And [106] here's how we build 
it.  We compare the numbers bitwise, and feed all the outputs into an or gate.  If one or more 
pairs of corresponding bits are unequal, then the numbers are unequal.

[107] Numbers can also be compared to see which one is smaller and which one is 



Digital Circuit Design, lecture transcripts, page  of 7 14

larger.  The output bit is positive if a is smaller than b.  We build this circuit [108] from a 
sequence of simpler circuits.  LT stands for less than.  Each LT box takes one bit of input 
from each of the operands, and a bit of input from its neighbor on the right.  Its output bit 
goes to its neighbor on the left.  Each of these output bits tells whether the part of a to its 
right is less than the part of b to its right.  So the output bit from the leftmost box tells 
whether all of a is less than all of b.  Now we just need to build the LT boxes. [109] And 
here is the circuit for one LT box.  When ai is 0 and bi is 1, then the output is 1, saying yes, 
the part of a to the right is less than the part of b to the right.  When ai is 1 and bi is 0, then 
the output is 0, saying no, the part of a to the right is not less than the part of b to the right.  
When ai and bi are equal, then the output is the same as the ci input.  You need to spend a 
little time checking all 8 input combinations to see that this circuit is correct.

[110] Now we design a circuit to add two numbers.  The inputs a and b are each an n 
bit number.  The s output is their n bit sum, if their sum is representable in n bits.  The 
overflow output is positive if the sum is too big to be represented in n bits.  Before we can 
design an adder, we have to know how to add. [111] So here's an example.  We start at the 
right side, which is column number 0.  We add 1 plus 0 and get [112] 1.  In the next column, 
column number 1, we add 1 plus 1 and get [113] 2, which is 1 0 in binary.  The 0 is a sum 
bit, and the 1 is a carry bit.  In column 2, we add 0 plus 0 plus 1, and get [114] 1.  In column 
3 we again add 1 plus 1 and get [115] 1 0.  Now we have to add 1 plus 1 plus 1, and we get 
[116] 3. which is 1 1 in binary.  In column 5, the leftmost column, we add 0 plus 0 plus 1, 
and get [117] 1.  So there's the sum.  When there's no carry, the carry is [118] 0, and I've also 
put a 0 carry to the left of the other carries because that's the overflow output.  Now we can 
design the circuit. [119] We use one box for each column in the addition.  Each ADD box 
takes one a bit, one b bit, and one c bit which is the carry from the previous column.  It adds 
them together, and produces a sum bit, and a carry bit to the next column.  So all we have to 
do is implement an ADD box, and then we'll have an adder.  I'll work on the sum output 
first.  That's the s output.  If you're adding an even number of 1s, the sum bit is 0, and if 
you're adding an odd number of 1's, it's 1.  Let me clear a space, [120] so for the sum output, 
all we need is [121] something that says whether there's an odd number of 1s among the 3 
inputs.  If the inputs are [122] 0 0 1, or [123] 0 1 0, or [124] 1 0 0, or [125] 1 1 1, then the 
output is 1.  So that's the sum output.  Now the [126] carry output.  It's 1 if there are at least 
two 1s among the inputs.  That could be the a and b inputs, or the a and c inputs, or the b 
and c inputs.  Or it could be all three, but that's already included in the other options.  I'll 
call it MAJ for majority.  We just [127] put the MAJ and ODD boxes together, and that 
makes an ADD box.  And that completes the adder circuit.

Now [128] let's make a subtractor.  It subtracts a minus b, and the difference is d.  
The overflow output is 0 if a is greater than or equal to b, so we can do the subtraction, and 
it's 1 if a is less than b.  So overflow is just the same as the less than circuit we did earlier, 
and overflow isn't really the right name for it. [129] So how do we subtract?  Here's how I 
was taught, in decimal.  Starting at the right, you can't take 6 from 2, so you borrow from 
the 0 in column 1.  Well, you can't borrow from 0, so you look further left, in column 2.  
That's still a 0, so you borrow from the 3 [130], making it a 2, and making the 0 to its right 
into a 10.  Now we can borrow from the 10, making it 9, [131] and making the 0 to its right 
a 10.  And now we can make the borrow we wanted to make in the first place, so [132] that 
10 becomes a 9, and the 2 becomes 12.  Subtract 6 from 12 and get [133] 6.  Subtract 5 from 
9 and get [134] 4.  Subtract 4 from 9 and get [135] 5.  Subtract 3 from 2, well you can't, so 
[136] borrow from the 1, now take 3 from 12 and get [137] 9.  And finally, 0 from 0 is [138] 
0.  Done.  But that's way too complicated, and it leads to a poor circuit.  So let's [139] start 
again.  Starting on the right side, in column 0, we want to take 6 from 2, and we can't, so we 
[140] carry a 1 to column 1.  I'm putting the carries in the middle because that 1 and the 2 in 
green make 12, and we can take 6 from 12, and that leaves [141] 6.  In [142] column 1, we 
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add the 5 and the 1 in red, and get 6, which we want to subtract from 0.  We can't, so we 
[143] carry 1 to column 2.  Now we're subtracting 6, which is the red sum, from 10 which is 
in green, and we get [144] 4.  In [145] column 2, we add the red 4 plus 1, and get 5, which 
we are subtracting from 0, so we [146] carry, and now we subtract 5, which is the red sum, 
from the green 10, and get [147] 5.  In [148] column 3, we add the red 3 plus 1, and get 4, 
and subtract that from 3, so we have to [149] carry, and we subtract the red sum from the 
green 13, and get [150] 9.  Finally, in [151] column 4, which is the leftmost column, we 
subtract the red sum from 1 and get [152] 0.  I'm going to [153] put a carry of 0 where there 
wasn't a carry, and the 0 at the left side of the carries means that the number we're 
subtracting is less than or equal to the number we're subtracting from, so the answer is good.

[154] Here's a binary example.  We'll [155] start by putting a carry of 0 in column 0.  
We subtract 0 plus 0 from 1, and get [156] 1 with a carry of 0.  Now, in column 1 [157], we 
subtract 1 plus 0 from 0, so we have a carry of 1 [158], and we subtract 1 plus 0, which is 
red, from 2, which is green, and get 1.  Now in [159] column 2, we subtract 0 plus 1 from 1 
and get [160] 0 with a carry of 0.  In [161] column 3, we subtract 1 plus 0 from 0, so we 
need to [162] carry 1, and now we subtract 1 plus 0 from 2, and get 1.  In [163] column 4, 
we subtract 1 plus 1 from 0, so we [164] carry 1, and subtract 1 plus 1 from 2 and get 0.  
And [165] finally, in column 5, we subtract 0 plus 1 from 1 and get [166] 0 with a carry of 0, 
which means the answer is good.

[167] A subtractor looks a lot like an adder.  There's one box for each column.  Its 
inputs are a bit from each operand, and a carry bit from the right.  Its outputs are one bit of 
the difference, and a carry bit to the left. [168] I'll clear a space, and [169] here's the SUB 
box.  The difference bit is exactly the same as for ADD, and the carry bit is the LT circuit we 
saw earlier, because the overflow output says whether input a is less than input b.  So that's 
subtraction.

So far we've just been talking about natural numbers, 0, 1, 2, and so on. [170] For 
integers, which includes positive numbers, zero, and negative numbers, computers use two's 
complement representation.  With just 4 bits it looks like this, but in a computer it's usually 
32 bits.  The natural numbers look just as you'd expect.  They all start with 0.  The negative 
integers look strange if you haven't seen them before.  The whole purpose of this 
representation is that [171] it uses the same circuits for addition and subtraction that work 
on natural numbers, with one little change:  overflow is positive when the leftmost two 
carries differ.  So now we have addition and subtraction for integers.  We'll do a multiplier 
later.

Now [172] I want to make a generalization of the multiplexer and demultiplexer 
circuits that we saw earlier.  The multiplexer we had earlier had 3 input bits.  One of them, 
the if input, selected between the other two inputs, the then input and the else input, to 
produce the output.  In this generalization, the if input has become n inputs, and the then 
and else inputs have become 2n inputs.  In my example implementation on the right, n is 2.  
The 2 inputs labeled x say which of the 4 inputs labeled y becomes the z output.  Look at the 
circuit for a few minutes and you'll see how it works, and how to generalize it to any 
number of bits.

[173] The demultiplexer can be generalized in the same way.  Instead of using 1 bit 
to choose between 2 destinations, it uses n bits to choose among 2n destinations.  In the 
picture on the right, n is again 2.  So the y input goes to one of the 4 possible destinations, 
and the other destinations all get a negative value.  Take the time to check all 8 
combinations of inputs, and figure out how to generalize it to any number of inputs.

[174] This is a register.  It has a control input c, a data input d, and an output q.  A 
register is just a group of flip-flops that all have the same control input.  This picture shows 
a 4 bit register, but it could be any number of bits.  We say that the register holds some 
information, which just means that the output is that information.  The information could be 
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a number, or it could be code for some characters, or it could be a computer instruction, or 
anything else.  To change the information in the register, put the new information on input d, 
and then send a pulse on input c.  After the pulse, the output q will be the new information, 
and it will continue to be that same new information until the next pulse on c.

The register shown here is sensitive, as you can see by the empty square at the 
control input.  That means that while the control input is positive, if the data input changes, 
the output changes too.  But we can [175] put edge-trigger circuitry at the control input to 
make an edge-triggered register.  This one is a falling edge-triggered register.  Its output 
changes only at the falling edge of a pulse on the control input.

Finally [176], our last basic circuit is a memory.  A flip-flop is 1 bit of memory, and a 
register is n bits of memory.  This is a random access memory.  Conceptually, a memory is 
just [177] a collection of registers, plus a demultiplexer and a multiplexer.  In a computer’s 
memory, typically each register holds 8 bits of information.  8 bits is called a byte.  And 
instead of 4 registers as in this picture, there are billions of registers.  The registers are 
numbered 0, 1, 2, and so on, and a register’s number is called its address.  Here’s how it 
works.  If you want to write some information into one of the registers, you put the 
information into the data input d.  As you see in the picture, d goes to all registers.  But a 
register doesn’t change its value until it gets a pulse on its control input.  You also put the 
address where you want the information to go into the writing address input w.  Now you 
send a pulse into the control input c.  The demultiplexer sends that pulse to just the one 
register addressed by w.  So just that one register changes its value.  If you want to read the 
information that’s in some particular register, you put its address into the reading address 
input r, and that goes into a multiplexer which selects just the information you want.  
Actually, that multiplexer on the right side of the picture is really several multiplexers, one 
for each bit in a register.  This memory is sensitive, but we can put edge-trigger circuitry at 
the control input if we want to.

That’s all the basic circuits we need.  We’re going to design more interesting circuits 
by a new method, starting in the next segment.

Segment 4

[178] In this segment we see how to design interesting and complex circuits.  First we write 
a program, then we compile the program to a circuit.  You can write the program in any 
programming language, so choose your favorite. [179] Each variable in your program gets 
compiled to a falling edge-triggered register.  This one is for a variable named x.  The 
register needs enough bits to store the values that can be assigned to the variable.  If the type 
of the variable is 32-bit integers, then the register needs 32 bits.  If it's an ASCII character 
variable, then the register needs 8 bits.  If it's a binary variable, then 1 bit is enough, and 
that's just a flip-flop.  The control inputs and the data inputs come from all the places in the 
program where the variable is being assigned a value.  And the output goes to all those 
places in the program where the value of the variable is needed.

Each [180] array in your program gets compiled to a memory.  This one is for an 
array named A.  Each register in the memory needs enough bits to store the values that can 
be assigned to an array element, and there must be enough registers in the memory for the 
number of elements in the array.  All the inputs on the left, the control inputs, the writing 
address inputs, and the data inputs, come from all places in the program where an array 
element is being assigned a value.  On the right, the reading address comes from all places 
where the value of an array element is needed, and the memory output goes to all those 
same places.

[181] Suppose the assignment statement x gets x plus y appears somewhere in your 
program.  Maybe it looks like the example on top, or maybe the one on the bottom, or 
maybe some other way, depending on the syntax of your programming language.  Anyway, 
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it gets compiled to the circuit shown here.  x and y come from the registers for those 
variables, and they go into an adder.  Input c is a control input.  A pulse on c causes the 
assignment to be executed.  It first goes through a delay that's just long enough for the 
addition to happen.  Then the pulse goes three places.  The bottom one is to some and gates, 
so the result of the addition can go to the data input for variable x.  The pulse also goes to 
the control input for variable x to cause the register to change its value.  The pulse also goes 
through another delay that's just long enough for variable x to latch onto its new value, and 
then it's an output called c prime;  that means the assignment is finished.

[182] An assignment statement that assigns a value to an array element is a little 
more complicated.  Suppose A of i is assigned the value of variable x.  The syntax may be 
like one of the two shown here, or maybe something else.  In the circuit, we need the value 
of variable x, and we need the value of variable i, and we need a control pulse to execute the 
assignment.  The pulse goes to and gates that let the value of x go to the data input for the 
memory that stores array A.  And the pulse also goes to and gates that let the value of i go to 
the writing address for the memory that stores array A.  The pulse also goes to the control 
input for the memory, and that causes the value of x to be stored at address i in the memory.  
The delay is just long enough for the memory to latch onto the new value, and the pulse 
comes out c prime to say it's all done.

[183] To put two assignment statements in sequence, or to put any two parts of a 
program in sequence, just connect the c prime output of the first part to the c input of the 
second part.  The pulse from the first part that says the first part is all done is the pulse into 
the second part to start the second part working.

[184] Most programming languages are not very good at expressing parallel 
computation, and your favorite language might not even have any way of expressing it.  
Which is a pity, because it's very useful.  If you can put two parts of a program in parallel, 
then this is the circuit you get.  The control input goes to both parts to start them at the same 
time.  But they might not finish at the same time.  The parallel composition is finished when 
both parts are finished, so the c prime pulses go into a symmetric merge, which has a pulse 
on its output when both inputs receive a pulse in either order or simultaneously.

[185] All programming languages have an if statement.  Its syntax might be one of 
these, or something else.  b is any binary expression, and P is any part of a program.  The 
box labeled b evaluates expression b.  If this expression makes use of some variables, then it 
has inputs that come from those variables.  The control c goes through a delay that's just 
long enough for b to be evaluated.  If b evaluates to true, which is a positive voltage, then 
the pulse from c goes to start execution of the box labeled P.  And when P is done, it sends 
out a pulse to say so, which goes through the or gate and says this if statement is done.  But 
if b evaluates to false, then the input control pulse goes straight to the or gate and says we're 
done.

[186] An if statement might have an else part, in which case the circuit looks like 
this.  Box b evaluates the binary expression, and the demultiplexer routes the control pulse 
to one of two boxes, either box P or box Q.  When that box finishes, it sends out a pulse that 
goes through the or gate and says the if statement is all finished.

[187] Now let's look at a loop construct.  The most common kind of loop is the 
while loop, whose syntax might look like one of these examples, or maybe like something 
else.  Anyway, the circuit starts off like the if statement circuit.  The binary expression b is 
evaluated.  This binary expression probably makes use of some variables, and so it has 
inputs coming from those variables, but they aren't shown in the picture.  The control pulse 
c goes through an or gate, and then through a delay that's just long enough for expression b 
to be evaluated.  If the value of b is true, then the pulse comes out the then output of the 
demultiplexer, and starts box P working.  When box P is finished, its final pulse goes back 
through the or gate and through the delay that allows expression b to be reevaluated, and the 
pulse again comes out of the demultiplexer.  If the value of expression b is false, the pulse 
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comes out the else output of the demultiplexer, and says that the loop is finished.  There are 
other kinds of loop constructs, and they all work this same way.

[188] The last programming language construct I want to look at is the procedure, or 
it's sometimes called a function or a method.  It's a piece of program that you define or 
declare one place, and then call it from other places.  In the top picture, the definition, or 
declaration, of the procedure produces a circuit, which is box P, and its control input comes 
from all the places where P is called.  Any one of the calls starts P executing.  The control 
output from P goes back to all the places where P is called.  The bottom picture is the circuit 
for one of those places where P is called.  When a pulse comes in its control input, that 
pulse goes up to P and starts it executing.  The same pulse also goes into the 1 input of a 
1-2-merge.  Then later, when P is finished, its final pulse comes back to this call circuit, into 
the 2 input of the 1-2-merge.  Since the merge has now had a pulse first on the 1 input, then 
on the 2 input, now there's a pulse on its output control saying the call is finished, so 
execution can continue with whatever follows the call.  The final pulse from P also goes to 
all the other places where P can be called from, and goes into the 2 input of their 1-2-merge 
circuits.  But for those other call places, there wasn't any previous pulse in the 1 input, so no 
pulse comes out of those 1-2-merges.  I think this will all become clearer with an example.

[189] Here is a C program to compute the greatest common divisor of two positive 
integers.  It starts with a declaration of two integer variables a and b.  On the next line we 
have the greatest common divisor procedure.  The first void means it doesn't have a 
functional result, and the second void means it doesn't have any parameters.  Instead, it 
computes the gcd of the values of variables a and b, and it puts the result in both those 
variables.  The starting values of a and b are its input, and the ending values of a and b are 
its output.  The body of this procedure is a while loop.  The body of the while loop is an if 
statement with an else part.  It says:  while a is not equal to b, if a is less than b then b is 
assigned b minus a, and otherwise a is assigned a minus b.  And that's the end of the 
procedure.  On the bottom line we have the main program, which starts by assigning a the 
value 3, and in parallel, assigning b the value 27.  The C language doesn't have any parallel 
connective, so I've used two vertical lines to mean in parallel.  After those assignments, it 
calls gcd.  gcd will change the values of variables a and b.  It will change them both to 3, 
which is their greatest common divisor.  Well, that's not a change for a but it is a change for 
b.  If this were a sensible program, the gcd would get used in some way, maybe just get 
printed.  But this program is just to show how a circuit gets produced.  To continue with 
main, it assigns a the value 12 and in parallel assigns b the value 30, and then calls gcd 
again.  After that call, both a and b have the value 6, and again a sensible program would do 
something with that, but we stop there.

[190] The two variable declarations give us two  32-bit registers whose inputs come 
from the places where the variables are assigned.  Variable a is assigned in three places.  
One of them is in gcd, and two of them are in main.  So the data inputs for a, that is, da, 
come from those three places, and the control for a, that is, ca, comes from those same three 
places.  The value of variable a is used in four places.  One of them is in the while 
condition.  One of them is in the if condition.  One of them is in the expression b minus a, 
and the last one is in the expression a minus b.  So the output from register a goes to those 
four places.  Variable b also is assigned in three places and used in four places.  So these are 
the circuits we get from the variable declarations.

[191] Here's the circuit we get from the declaration of procedure gcd.  In the bottom 
left corner we get the control signal that starts it working.  gcd is called from 2 places, so 
two of these paths coming in are from those places.  I'll tell you where the other two paths 
come from later.  In the previous picture we saw that a and b each go four places.  Those are 
the unequal-to box, the less-than box, and the two subtraction boxes in this picture.  gcd 
starts out by saying while a is unequal to b, so that's at the top left, and the result goes into a 
demultiplexer.  If a and b are unequal, the control pulse comes out the then output.  If 
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they're equal, the control pulse comes out the else output, and goes back to the calling places 
to say gcd is all finished.  If a and b are unequal, then we see if a is less than b.  And if it is, 
the control pulse goes to the top right part of the picture.  This is the assignment statement b 
gets b minus a.  You see b minus a from the subtraction box, and its result goes to the data 
input to variable b, and the control pulse goes to the control input for variable b.  That's the 
paths labeled db and cb.  And at the top right corner, we've just finished the if statement, and 
so we've just finished an iteration of the loop body, so the control output has to go back and 
restart the loop, which is the same place as the call that starts the whole procedure.  So that's 
one of the inputs at the bottom left that I said I would tell you about later.  I could have 
drawn the line going down and back, but I thought the picture would be neater if I just 
labeled it gcd because that's what the start of the procedure is labeled.  If a wasn't less than 
b, then the control pulse went to the bottom right part of the picture, where we have the 
circuit for the assignment a gets a minus b.  And from there, the control pulse also has to go 
back and restart the loop, so that's the final path of the four paths into the bottom left corner 
of the picture.

[192] Here's the circuit for the main procedure.  It starts at the top left, where we 
have the circuit for the assignment a gets 3.  The box with a 3 in it has no input and its 
output is 32 paths with constant values representing 3 in binary.  They go to da, which is the 
data input to the register for variable a, and the control pulse goes to ca to cause the 
assignment a gets 3 to happen.  That assignment is in parallel with the assignment b gets 27 
in the bottom left corner.  In general, when two things are in parallel, they might take 
different lengths of time, so their control outputs go into a merge, and when they are both 
finished we get a pulse out of the merge box.  After that merge, the next thing is a call to 
gcd, so that's the path going upward to one of the inputs we saw on the previous picture.  
And when gcd is done, we get a pulse back down the path labeled gcd prime from the 
previous picture.  So that's two pulses into the 1-2-merge in the right order.  Way over on the 
top right corner of the picture, the pulse from gcd saying it's done also comes down the path 
labeled gcd prime from the previous picture, and into the 2 input of a 1-2-merge, but there, 
in the top right corner, there wasn't any pulse into the 1 input, so there's no pulse out the 
right side.  Right now, the control pulse has just left the first 1-2-merge box in the middle of 
the picture, and it starts both the a gets 12 and b gets 30 assignments in parallel.  When 
they're both done, gcd gets called again.  When the pulse comes back from the gcd 
procedure to say it's done, once again it comes to both 1-2-merges, but only the rightmost 
1-2-merge has the right combination of input pulses to emit an output pulse to say main is 
done.

So now we have a working circuit design, but the job is still only half done.  The 
next phase is called optimization.  What we have so far is what you get from applying the 
general case design patterns.  But there are improvements that can take advantage of the 
specific program we're compiling.  The course notes explain the process.  Here, I'll [193] 
just show you the result.  The circuit at the top gets simplified to the circuit at the bottom of 
the page by taking advantage of the fact that the expressions being assigned are constants.  
That's a smaller and faster circuit to do the same job.

[194] We've already covered circuits for addition and subtraction of integers.  Here's 
how we do multiplication of integers.  We start by declaring integer variables a, b, and p, 
and that gets compiled to 3 registers, which I won't bother to show you.  The mult procedure 
multiplies the values of a and b together without changing the values of a and b.  The result 
of the multiplication is the final value of variable p.  The mult procedure begins by declaring 
two local variables x and y, so that's two more registers.  x is initialized to the value of a, y is 
initialized to the value of b, and p is initialized to 0, and those three initializations happen in 
parallel.  Then there's a loop.  The first test is y not equal to 0, [195] so we'll need a box for 
that.  But that's just an or gate.  If any bit of y is 1, then y is nonzero.  The body of the loop 
is three statements in parallel.  In the first one, after the word if, that's y divided by 2 and 
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then take the remainder and see if that's equal to 1.  In other words, if y is an odd number, 
then p gets p plus x.  The test, [196] to see if y is odd, is just the rightmost bit of y. [197] To 
add p plus x, we need an adder.  The middle statement says x gets x times 2, and that looks 
like we need a multiplier, but we don't have one.  If we need a multiplier to build a 
multiplier, then we're out of luck. [198] Fortunately, multiplication by 2 is just a shift left.  If 
you take all the bits of x and shift them left one place, that multiplies x by 2.  We don't need 
any gates for that.  All the bits of x are input, we just discard the leftmost bit, and stick a 0 
on the right, and that's the output.  The last statement is y gets y divided by 2. [199] Division 
by 2 is just a shift right.  All the bits of y come in, but we discard the rightmost bit, and put a 
0 on the left. [200] Here's the circuit.  A pulse comes in mult on the left side to start the 
circuit working.  In the bottom left corner you can see the assignments x gets a and y gets b.  
The assignment p gets 0 just needs the pulse to go to cp, which is the control input for p.  It 
doesn't need all those 0s to go to the data input for p.  Just on top of the first demultiplexer 
you see the or gate that is the test for y not equal to 0.  If y is 0, the pulse goes out mult 
prime to say all done.  If y is not 0, the second demultiplexer tests whether y is odd, and if it 
is, we have the circuitry for p gets p plus x.  At the same time as that, down below it, we 
have the shift left and the shift right.  You see bits 0 through 30 of x come in, and they go 
out as bits 1 through 31.  And you see bits 1 through 31 of y come in and go out as bits 0 
through 30.  Then on the very right side, the merge says that when all that's done, we have to 
go back and start the loop again.

I won't show you a division circuit, or any circuits to do floating-point arithmetic, 
but they can all be built the same way.  Just write a program, and compile it to a circuit.

[201] Now I want to show you how to build a computer.  The way to build a 
computer is to [202] write a program, then compile it to a circuit.  This is the first half of 
that program, and [203] this is the last half.  That's just to show you how long the program 
is.  Now I'm going back [202] to the first half to point out a couple of things.  The top line 
defines the memory size.  If we want a different memory size, just put a different number 
there.  The next line declares an array called RAM.  An array gets compiled to a memory, 
and that's the main memory of the computer.  And right after it is a variable called AC.  That 
gets compiled to a register:  the accumulator register.  The next line declares IR, which is the 
instruction register.  The next line declares PC, which is the program counter.  And the line 
after that is a condition code register called E.  That's all the declarations.  Now there's one 
procedure called execute.  And in it there's one loop.  Computer designers call it the fetch-
execute loop.  After a couple of lines you see it says fetch starts here.  And then a couple of 
lines later it says execute starts here.  The execute part is just a single switch statement, and 
that gets compiled to a general demultiplexer, with one case for each instruction.  There's a 
little program for each computer instruction.  There's LDA, which is the load accumulator 
instruction.  Then there's STA, which is store accumulator.  And so on. [203] The second 
page is just more instructions.  And that's the whole program.  We could execute this 
program on an existing computer, and we would be simulating the operation of the new 
computer.  If we compile this program to a circuit, then that circuit is the new computer.

A computer is one of the most complex circuits that people have been able to design.  
That's because they have been designing circuits by deciding what gates they need and 
arranging them in the right way to produce the right effect.  What they should be doing is 
writing programs and compiling them to circuits.  Look at the length of this program:  just 2 
pages.  That's a very short program.  A commercial cpu might be a 10 page program.  But a 
web browser program might be hundreds of pages long.  We can design circuits to do much 
more complex and interesting tasks by writing programs and compiling them to circuits.

[204] So let's say you write a program.  There are two ways to get your program 
executed.  The usual way is to compile it to the machine language of some computer, and 
then execute it on that computer. [205] But now you know there's another way.  You compile 
it to a circuit design, then you fabricate the circuit, and then power up the circuit.  So which 
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way is better? [206] Well, the first way is certainly easier.  You need a computer, which you 
have, and you don't need a circuit fabrication facility, which you probably don't have. [207] 
And it's less expensive, by a lot. [208] And you want to test the program, and debug it, and 
that's a lot easier the first way. [209] Even after you get the program right, you might want 
to add something to it, and [210] especially if that happens a lot, it's better to execute your 
program on a computer.  On the other side [211] of the ledger, once you've got your program 
written and debugged, if it's going to be embedded in a car or a camera or any other piece of 
hardware where you're not updating it every week, you might want to turn your program 
into a circuit.  And if it does get updated once a year, it's easy enough for a garage mechanic 
to pull out the old circuit and plug in a new one.  But for most cars and appliances, it's never 
updated.  This might change as cars become self-driving.  We'll see. [212] A big advantage 
of compiling to a circuit is that the result is a hundred times faster.  There's no memory 
bottleneck, and much more parallelism.  So if speed is important, this might be the better 
way. [213] A circuit is much more secure than software because there's no way to subvert it.  
So if security is important, this is the better way. [214] And finally, if you need a circuit for a 
task that's too complex for traditional circuit design, you have to design it by writing a 
program and compiling it to a circuit.  Even if you're perfectly happy to execute your 
program on a computer, the computer you execute it on is best designed by writing a 
program and compiling it to a circuit.

[talking head] I hope you found these lectures interesting, and I hope they increased 
your understanding of digital circuit design.

end


