
Bunches for Object-Oriented, Concurrent,
and Real-Time Specification

Richard F. Paige1 and Eric C.R. Hehner2

1 Dept. of Computer Science, York University, Canada.paige@cs.yorku.ca
2 Dept. of Computer Science, University of Toronto, Canada.hehner@cs.utoronto.ca

Abstract. We show how a collection of object-oriented concepts can be directly
expressed in predicative programming [6]. We demonstrate how these features
can be used in cooperation with the existing real-time and concurrency features of
predicative programming in several examples, thus providing a simple integration
of object-orientation, real-time, and concurrency.

1 Introduction

Formal methods—like Object-Z [3], VDM++ [7], and others—have been developed
for rigorously specifying and proving properties about object-oriented (OO) systems.
Similarly, methods have been developed for specifying and reasoning about real-time
and concurrent systems, e.g., CSP, CCS, and the various real-time refinement calculi.
There has been much recent interest in integrating these different paradigms. Work on
combining CSP and Object-Z [13], Timed CSP and Object-Z (TCOZ) [8], VDM++
(which integrates VDM with concepts from Ada and process algebras), has aimed at
producing notations that combine OO, concurrent, and real-time features.

The thesis of this paper is that integrating notations is not necessary to be able to
write specifications that combine OO, real-time, and concurrency. We justify this claim
by showing how predicative programming [6] and its type system can be used, without
modification, for specifying and reasoning about simple OO systems. This would not
be a particularly novel contribution by itself. However, predicative programming cur-
rently provides a wealth of support for real-time, concurrency, and communication. By
showing how the method can also be used for OO, we can immediately begin to use
OO with real-time, concurrency, and communication techniques.

Our aim in this paper is to introduce predicative programming and to show how
it can be used without modification to specify and reason about a collection of OO
concepts in cooperation with its existing real-time and concurrent features. We do not
intend to extend or generalize existing OO theories, e.g., those from [1]. Instead, we
show how to use predicative notation to specify a core collection of object-oriented
techniques, like classes, inheritance, redefinition, and dynamic binding, and show how
these features can be used with concurrency and real-time.

1.1 The Paper

We commence with an overview of predicative programming [6]. We summarize the
predicative type system, which is based onbunches[5], and which will be used to spec-
ify OO concepts. We then show how to specify classes and class interfaces, single and

multiple inheritance, and explain how to deal with redefinition of feature semantics un-
der inheritance. Section 4 contains examples that demonstrate the techniques, including
examples that integrate OO and real-time, as well as OO and concurrency. Finally, in
Section 5, we discuss limitations, and suggest directions for future work.

2 Predicative Programming

Predicative programming [6] is a program design calculus in which programs are speci-
fications. In this approach, programs and specifications are predicates on pre- and post-
state (as in Z, final values of variables are annotated with a prime; initial values of
variables are undecorated). The weakest predicate specification is> (“true”), and the
strongest specification is? (“false”). Refinement is just boolean implication.

Definition 1. A specificationP on prestate� and poststate�0 is refined by a specifica-
tion Q if 8�; �0 � (P(Q):

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. As well, specifications can be combined using the
familiar operators of boolean theory, along with all the usual program combinators, as
well as combinators for parallelism and communication through channels.

Predicative programming can be used to specify objects and classes. To do so, we
need to introduce the predicative notation for types, namely bunches.

2.1 Bunches and types

Bunches were introduced in [5], and are used in [6] as a type system. They are applied in
[11] in formalizing selected static diagrams of UML. A bunch is a collection of values,
and can be written as in this example:2; 3; 5. A bunch consisting of a single element
is identical to the element. Some bunches are worth naming, such asnull (the empty
bunch),nat (the natural numbers),int (the integers),real (the bunch of reals),char (the
bunch of characters) and so on. More interesting bunches can be written with the aid of
the solution quantifierx, pronounced “those”, as in the examplexi : int � i2 = 4. The
colon,:, is the subbunch operator; in general,A : B is a boolean expression saying that
A is a subbunch ofB. For example,

2 : nat nat: int

We use the asymmetric notationm; ::n for xi : int �m� i < n.
Bunches can be used as the contents of sets, as in

f2; 3; 5g fxi : int � i2 = 4g

though we might choose not to writex in the latter example. Bunches can also be used
as a type system, as in the declarationvar x : nat (perhaps with restrictions for easy
implementation). Any bunch, including the empty bunchnull, can be used as a type.
For example, the declarationvar x : 1 says thatx can take on one value,1.

Bunches can also be used in arithmetic expressions, where the arithmetic operators
distribute over bunch union (comma):

nat= 0; nat+ 1

We write functions in a standard way, as in the example� n : nat � n+ 1. Function
application is by juxtaposing the function name and its arguments, e.g.,f x. The domain
of a function is obtained by the� operator. If the function body does not use its variable,
we may write just the domain and body with an arrow between. For example,2! 3 is
a function that maps2 to 3, which we could have written� n : 2 � 3 with n unused.

When the domain of a function is an initial segment of the natural numbers, we
sometimes use a list notation, as in[3; 5; 2; 5]. The empty list is[nil] (nil without
square parentheses is the empty string). We also use the asymmetric notation[m; ::n] for
a list of integers starting withmand ending beforen. List length is#, and catenation is
+ (raised plus). A list of characters, such as\abc" can be written within quotes.

All functions we use in this paper apply to elements, and thus application of a func-
tion f distributes over bunch union, i.e.,

f null = null f (A;B) = f A; f B

A union of functions applied to an argument gives the union of the results, i.e.,(f ; g) x =
fx; gx. A functionf is included in a functiong according to thefunction inclusion law.

(f : g) = ((�g : �f) ^ (8 x : �g � fx : gx))

Thus we can prove(f : A! B) = ((A : �f) ^ (8 a : A � fa : B)). Using inclusion both
ways round, we find function equality is as usual.

(f = g) = ((�f = �g) ^ (8 x : �f � fx = gx))

list T consists of all lists with items of typeT. By defininglist as list = �T : �list �
0; ::#(list T)! T, list T can be used as a type.

The selective unionf j g of functionsf andg is a function that behaves likef when
applied to an argument in the domain off , and otherwise behaves likeg. It is similar to
Z’s function extension.

�(f j g) = �f ; �g

(f j g)x = if x : �f then f x elseg x

One of the uses of selective union is to write a selective list update. For example, if
L = [2; 5; 3; 4] then2 ! 6 j L = [2; 5; 6; 4]. Another use is to create a record
structure. DefinePERSONas follows.

PERSON= \name"! list char j \age"! nat

Declare variablep of typePERSONand assignp as follows.

p := \name"! \Smith" j \age"! 33

We can access the name field ofp by dereferencing:p\name".

2.2 Functional refinement

A refinementrelation can also be applied to functions. A functionP is refined by a func-
tion S if and only if all results that are satisfactory according toSare also satisfactory
according toP. Formally, this is just bunch inclusion,S : P. When writing refinements,
we prefer to write the problem,P, on the left, and the solution,S, on the right. Thus, we
write P :� S(informally read as “P is refined byS”), which meansS : P.

2.3 Real-time and concurrency

Predicative programming is well-suited to specifying and reasoning about real-time,
concurrent, and communicating systems. To talk about time, a time variablet is used;
the theory need not be changed at all. The interpretation oft as time is justified by
how it is used.t is used as the initial time (where execution starts), andt0 for final time
(where execution ends). To allow for nontermination, the domain of time is a number
system extended with an infinite number1. The number system can be naturals, reals,
et cetera. The following example says that the final value of variableh should be the in-
dex of the first occurrence ofx in list L, and that any program satisfying the specification
must provide an execution time that is linear in the length ofL.

(: x : L(0; ::h0) ^ (Lh0 = x_ h0 = #L)) ^ t0 � t +#L

Predicative programming includes notations for concurrent specification and for com-
munication. We will not use the communication notations explicitly herein, but we will
use concurrency; we direct the reader to [6] for details on communication.

The independent composition operatork applied to specificationsP andQ is de-
fined so thatP k Q (pronounced “P parallelQ”) is satisfied by a machine that behaves
according toP and at the same time, in parallel, according toQ. The formal meaning
of k is as follows. Let the variables used byP andQ be denoted by� (� may be any
number of variables, but it does not includet).

P k Q = 9�P; �Q; tP; tQ �

P[�P=�
0; tP=t0] ^Q[�Q; tQ=�

0; t0] ^

(�P = �) �0 = �Q) ^ (�Q = �) �0 = �P) ^ t0 = max tP tQ

(P[a=b] means “substitutea for b in P”.) Informally, if P leaves a variable unchanged,
thenQ determines the final value, while ifQ leaves a value unchanged,P determines
its final value. If both processes change the value, then the final value is undetermined
(unless the processes agree on the final value).

We defineki:0;::k P(i) to beP(0) k : : : k P(k� 1) for any specificationP on i.

3 Using Bunches for Object-Oriented Concepts

We now outline how bunches and predicative notation can be used to specify a core
collection of OO concepts, including classes, objects, features, inheritance, and redefi-
nition of feature semantics. Our intent is not to present a new OO theory; rather, it is a
step towards being able to use OO, real-time, and concurrency together.

3.1 Specifying classes and objects

Several different definitions of the notion of a class have been presented in the literature.
The definition of a class that we use is adapted from [9].

Definition 2. A class is an abstract data type equipped with a possibly partial be-
havioural specification.

A class consists of a number of features, which areattributes(representing state) or
routines(representing computations). Routines may be further subdivided intofunc-
tions (which return a value) andprocedures(which can change state). No routine is
both function and procedure. A class specification has three parts:

– a class interface, which declares all the attributes and functions of the class and
gives their signatures (our convention is that class interface names end inInt).

– a class definition, which defines all the functions (our convention is that class defi-
nitions will always be in upper case).

– zero or more procedure definitions.

A separation of a class into interface and definition is useful, because it lets us define
inheritance in terms of each (the concepts coincide when the interface possesses no
functions). Note that our notion of interface is more general than that in Java, since
we allow attributes in an interface, and the definition of some, but not necessarily all,
functions. In this last respect, our notion of interface is closer to the Eiffel concept of
deferred class[9].

We illustrate these mechanisms with a simple example: a stack of integers. The stack
has one attribute,contents, which is a list of integers. It also has three routines,push,
pop, andtop. The interface specification of the stack,StackInt, declares the attributes
and functions, and gives their signatures.

StackInt= \contents"! list int j \top"! int

A specific behavior is required for the parameterless functiontop. The definition oftop
is given in terms ofcontents, and is specified in the class definitionSTACK. (In the
definition, recall thats\top" is the record dereference syntax.)

STACK= xs : StackInt� s\top" = s\contents"(#s\contents"� 1) (1)

STACKis the bunch of all elements ofStackIntthat satisfy the definition oftop: top is
the last element of the listcontents. (We could, in fact, write a genericSTACKclass, by
replacing theint type for elements by a generic parameterT.)

For procedures we use a different approach, which is described in Section 3.2. In
the interim, we turn to objects, which are instances of classes.

Definition 3. An object is a variable with a class definition for its type.

To declare an object of classSTACK, we can writevar s : STACK, and can access
the contentsfield of objects by dereferencings, written s\contents". A dereferenced
field may be any function or attribute. To assign a value to fieldcontents, we just carry
out a record field assignment, written either ass\contents" := value, or (as a selective
union), ass := \contents" ! value j s. This approach does not support any notion of
information hiding; visibility of features is enforced only by specifier discipline.

3.2 Specifying procedures

The formalization of classes is sufficient for specifying attributes and functions of
classes, but is insufficient for capturing procedures, i.e., routines that change the state
of an invoking object.

Each procedure of a class is a predicative function that takes an instance of the class
as argument, and returns a changed, new instance of the class. Supposef is to be a
procedure of classC. We define a (possibly nondeterministic) functionf : C ! C. To
usef applied to an objectc of classC, we writec:f which is sugar for the assignment
c := f (c). The syntaxc:f allows specifiers to use procedures in a syntax similar to
what is found in languages like C++ or Java. This function does not have side effects;
it maintains the command/query separation suggested in [9].

Returning to the stack example, the procedurepopwould be specified as

pop= � s : STACK� \contents"! s\contents"[0; ::#s\contents"� 1] j s

The method to push integerx to aSTACK sis

push= � s : STACK� � x : int � \contents"! s\contents"+[x] j s

pushcan be used by writings:push(x), which is sugar fors := push s x. After a push
or apophas been applied to a stacks, the value of functions\top" will have changed.
The definition ofs\top" will not change, only its value.

3.3 Implementation

The preceding formalization of classes and objects is straightforward to structurally
transform into an object-oriented programming language, e.g., Eiffel. A class definition
T can be transformed into an Eiffel classT. Attributes are transformed into objects that
are features of the class; for example, arraycontentsof classSTACKcould be mapped
to an instance of classARRAYin Eiffel. Function definitions are transformed into bodies
of functions in Eiffel; for example, the function definition oftop, given in equation(1),
can be easily transliterated into the following Eiffel function of classSTACK.

top : INTEGER is do
result := current.contents.item(contents.upper-1)

end

References to the bound variables in (1) are replaced with references to the current
object,current , in the Eiffel program. In general, a simple transliteration of predica-
tive specification to Eiffel program will not be possible, thus refinement may have to
take place beforehand.

Functions on objects in predicative notation can be transliterated into procedures of
a class; explicit reference in the function to the object that is passed as an argument
can be replaced by explicit reference to the current object. For example,pushcould be
transliterated into the following Eiffel procedure (append is a feature of classARRAY).

push(x:INTEGER) is do
current.contents.append(x)

end

3.4 Single and multiple inheritance

We now give a brief overview of inheritance in predicative programming. There are
many different definitions and types of inheritance, e.g., see [1, 9]. The definition we use
in this paper is one ofsubtyping:if a (child) classB inherits from a (parent) classC, then
B can be used everywhereC can be used. We take this approach predominantly because
we want to ensure behavioral compatibility between classes related by inheritance.

It is straightforward to determine if a class definitionB is derived from class defini-
tion C. Since each class is just a type, we can apply bunch inclusion notation directly.

Rule 1. [Inheritance Relation] ClassB inherits from classC if B : C.

This rule is valid if there are functions in the class definitions; we just apply func-
tion inclusion. When applying function inclusion, we must take care with function do-
mains and ranges: functions are anti-monotonic in their domains, and monotonic in
their ranges (see Section 2.1: function inclusion).

We also need to show how to build one class from another using inheritance. Sin-
gle class inheritance is expressed in predicative notation by merging the definition or
interface of the parent class with any new features that the child class will provide; this
produces a definition or interface for the child class.

Definition 4. Let C be a class definition or interface. If classB singly inheritsC, then

B = \b1"! T1 j : : : j \bi"! Ti j : : : j \bk"! Tk j C

where thebj are attribute names andT1 throughTk are bunches.

By definition, B : C, because every value satisfactory toB is also satisfactory toC.
In other words, classC includes all its extensions. This last fact is an artifact of the
axiomatic definition of bunches in [6].

The names of attributes and functions ofC andb1; ::; bk can coincide. Ifbi is also
the name of an attribute ofC, then the attribute inC will be replaced by new attribute
bi in B. In order to maintain the subbunch relation of Rule 1, constraints must be placed
on the types of the replacements. If abi overrides an attribute inC, then the type of the
new attribute must be a subbunch of the original. This is thecontravariantrule [9]. A
discussion of the limitations and advantages of contravariance is in [9].

An implication of using selective union to specify inheritance is that in class hi-
erarchies, the order in which features appear in class definitions or interfacesmatters.
ConsiderB, above: ifC had appeared before all the new featuresbi , then the features
in C could override the new features – which is probably not what the specifier in-
tended. To get around this complication, we follow the convention that, when using
single inheritance, the parent class will always appear last in the child class interface
or definition. Most OO programming languages enforce this by syntactic means. (We
discuss the effect ordering of parent classes will have on multiple inheritance shortly).

Procedures of a parent class are inherited by a child class in the following sense. If
there is a proceduref : C ! C, and classB inherits fromC, thenf can be applied to
objects of classB, and type correctness is guaranteed on the use off , becauseB : C.
Therefore,f can be specialized for the methods of classB. New procedures can also be

added to child classes. However, arbitrary procedure addition is not possible, because
new procedures may falsify constraints specified in a parent class. Thus a new non-
vacuous procedureh (i.e., a procedure that does not map everything to the empty bunch)
of child classC that inherits from parentB must guarantee, for allc : C, thath(c) : B.

3.4.1 Overriding and redefinition We have defined inheritance in terms of selective
union, which allows us to override features of a parent class in a child class. In par-
ticular, it lets us give different definitions to functions in child classes than are present
in parent classes; this allows us to specify a kind ofredefinition. In a class definition,
functions can always be redefined (as is the case with Java and Eiffel, but not C++).

Let C be a class definition with functionf : T, and possibly some more attributes.
Let BInt inherit from C. By construction,BInt : C. Redefine functionf in the class
definitionB as follows.

B = xb : BInt � (b\f" = body)

wherebody is a subbunch ofT. Functionf in B can therefore have a definitionbody
different from that given tof in the definition ofC. There are constraints on the redef-
inition body: a definition forf is inherited fromC, sayP. In the class definition forB,
function f is being further constrained. Thus, the new constraint thatb\f" = body is
effectively being conjoined with the original constraintP from classC. Thus, whatever
new definition off is provided must not contradict the original definition. That is, the
specification

b\f" = P^ b\f" = body

must be satisfiable; this can be ensured by makingbodya refinement of the original
definitionP. This is akin to the correctness constraints on redefinition in Eiffel [9].

Procedure redefinition can be simulated by overloading procedure names; each in-
stance of the procedure is defined on a different class in a hierarchy. The types of ar-
guments to the procedure dictate the instance of the procedure that is to be used. New
procedures must satisfy the constraints of the parent class.

Redefinition allows us to support a form of dynamic binding of functions, where
the instance of a function that is used in a call is dependent on the dynamic type of an
object, rather than its static type. Suppose we have a classA with featuref , and classB
inherits fromA and redefinesf . Declare a list of instances ofA, and an instance ofB,
and set element3 of a to referenceb.

var a : list A � var b : B � \3"! b j a

The static type ofa(3) is A; its dynamic type isB. A call to a(3)\f" will use theB
version off .

3.4.2 Multiple inheritance Multiple inheritance allows a child class to have more
than one parent. It has been suggested as being useful in describing the complex class

relationships that occur in domain modeling, as well as for building reusable object-
oriented libraries. In predicative programming, we can easily adopt the simple yet pow-
erful Eiffel approach to multiple inheritance. We summarize some details here.

Multiple inheritance, in predicative programming, takes two or more parent class
definitions or interfaces, and produces a child class definition or interface (to simplify
the discussion, we will refer only to ‘parent’ and ‘child’ classes, which we allow to
mean class definitions or class interfaces). We first provide a preliminary definition of
multiple inheritance, and then touch on its limitations.

Definition 5. Let C1; ::;Ck be classes. IfB multiply inherits fromC1; ::;Ck then

B = C1 j C2 j : : : j Ck

B can also add new features and these new features can override attributes or functions
in any of C1; ::;Ck. The restriction on overriding is that the types of the overriding
features must be subtypes of the original features.

3.4.3 Name clashesSuppose that the name of a feature is declared in two or more
parents, and the parents are multiply inherited. Should there be one or two occurrences
of the shared name in the derived class? Following [9], we can treat this problem syn-
tactically, and use one of two mechanisms to resolve name clashes.

1. Order the base classes in the definition of the derived class, so as to override those
features that we do not want in the derived class. In this way, we can select the
reoccurring feature that we want to inherit in the derived class.
Unlike multiple inheritance in some languages, in predicative programming the
order in which base classes are multiply inheriteddoesmatter, and we can use this
to our advantage to resolve name clashes.

2. Apply a renaming to all the commonly named features of the base classes in order
to eliminate name clashes. This approach can be used in Eiffel [9]. An example
is shown in Fig. 1: attributea is common to bothC1 and C2. If we need two
occurrences of the attribute in the derived classD, we rename the occurrences ofa
in the definition ofD.

C1 C2

a:A a:B

D

aC1 : A
aC2 : B

rename a to aC1 rename a to aC2

Fig.1.Renaming to avoid name clashes

Renaming in predicative notation is just substitution. The definition of classD,
from Fig. 1 would beD = C1[aC1=a] j C2[aC2=a], whereaC1 andaC2 are fresh

names of features.D can add new attributes and functions as necessary. We place
one restriction on the names of new features likeaC1: they cannot take on any of
the names that are being changed.
If we rename features to avoid clashes in a child, the child is no longer (provably)
a subtype of its parents. The proof rule for inheritance involving multiple parents
and renaming is therefore slightly more complex.

Rule 2. [Multiple Inheritance Relation] Let D inherit from both classesC1 and
C2, and suppose namea is shared betweenC1 andC2. D is derived fromC1 if
there exists a substitution[a=aC1] such thatD[a=aC1] : C1 (and similarly forC2).

Feature renaming must also be applied to the procedures ofC1 andC2 that are
inherited byD. If a methodf : C1 ! C1 uses the attributea : A anda : B is an
attribute of classC2, then classD must have a new procedure, sayDf : D ! D,
with definition

Df = f [aC1=a]

Multiple inheritance can be expressed and used in predicative notation, but it is not
always convenient to use the renaming facility to avoid its problems: the specifier must
keep track of all the renamings. For large OO specifications, this will be impractical.
Automated support for keeping track of renamings, e.g., as provided by a compiler, is
essential for this solution to be feasible.

3.4.4 Repeated inheritanceIf a class is a descendent of another through two or
more paths, then repeated inheritance has occurred. Under repeated inheritance in bunch
notation, a function or attribute from a common ancestor will yield a single method or
attribute if it is inherited under a single name (this matches the notion ofvirtual base
class in C++). If a renaming is applied to one or more features, a derived class can
have two or more instances of a feature; [9] gives examples of when this is useful.
The solution that we applied for resolving name clashes can also be used in resolving
repeated inheritance (as is the case with Eiffel).

4 Examples

We present several examples of specifying OO systems, as well as combining use of
OO and real-time (via a specification of the gas burner) and OO and concurrency (in a
specification of a solution to the dining philosopher’s problem).

4.1 Sequences and Queues

Our first example simply aims at illustrating the main concepts of the previous sections.
We define aSEQUENCEclass, and derive aQUEUEclass from it. A sequence consists
of the following features: a listcontentsof data elements; anadd procedure, which
puts an elementx at positioni of the sequence; adeleteprocedure, which removes
the element at positioni of the sequence; aget function, which returns the element at

position i, or�1 if there is no element ati; and, anemptyfunction. We first provide
a class interface,SeqInt, where the sequence is to contain integers.SeqIntdeclares the
attributes plus the signatures ofindexandempty.

SeqInt= \contents"! list int

j \get"! (nat! int) j \empty"! bool

This interface has two functions,getandempty, which we now define.

SEQUENCE= xs : SeqInt�

s\empty" = (#s\contents" = 0) ^

s\get" = (� i : nat � if i < #s\contents" then s\contents"(i) else�1)

We next specify the methodadd. If an addition at indexi occurs where an entry exists,
the entry at indexi is overwritten withx; otherwise, catenation occurs.

add= � s : SEQUENCE� � i : nat � � x : int �

if 0 � i < #s\contents" then \contents"! (i ! x j s\contents") j s

else\contents"! (s\contents"+[x]) j s

The deletemethod is defined as follows: to remove an entry that exists, all following
entries are shifted left by one; otherwise, the sequence is returned unchanged.

delete= � s : SEQUENCE� � i : nat �

if (0 � i < #s\contents") then

\contents"! (s\contents"[0; ::i]+s\contents"[i + 1; ::#s\contents"]) j s

elses

The then branch of thedeletemethod can be refined using standard predicative tech-
niques. The ability to use standard refinement in developing programs is one benefit
of using predicative programming in specifying object-oriented systems. To refine the
then branch, we introduce a new recursive function,shift, which takes three arguments:
a sequences, a pivot elementi (everything to the right ofi is shifted left one index), and
a counterj. It is recursively defined as follows.

shift= � s : SEQUENCE� � i; j : nat �

if j � #s\contents"� 1 then [nil]

else if j = i then [s\contents"(i + 1)]+shift s i(j + 2)

else[s\contents"(j)]+shift s i(j + 1)

Using the functional refinement laws from [6], it is straightforward to prove that

delete :� � s : SEQUENCE� � i : nat � if 0 � i < #s\contents" then shift s i0 elses

The refined specification is implementable in any language that supports lists and re-
cursion.

SEQUENCEcan now be used in constructing aQUEUE class.QUEUE is like a
SEQUENCE, except it is used in FIFO order. We derive aQUEUEclass fromSEQUENCE,
adding a new state attribute calledcursor, which is an index to the front of theQUEUE,
and a new function calledhead, which gives the element at the head of the queue. First
we specify the interface of the new class.

QueueInt= \cursor"! 0 j \head"! int j SEQUENCE

To define the functionhead, we give a class definition forQUEUE.

QUEUE= xq : QueueInt� q\head" = q\get" q\cursor"

headis the value stored in thecontentsattribute, in entrycursor. It follows immediately
that QUEUE : SEQUENCE(sinceSEQUENCEincludes all its extensions), and so
QUEUE is derived fromSEQUENCE.

We now specify the procedures ofQUEUE; in doing so, we specialize procedures of
SEQUENCE. There are two:enqueue, which adds an element to the rear of theQUEUE,
anddequeue, which removes the front-most element of theQUEUE. To enqueuean
element, we carry out anadd in the last position in the sequence.enqueuechanges only
those parts of the queueq that are affected byadd.

enqueue= � q : QUEUE� � x : int � add q(#q\contents") x j q

addreturns aSEQUENCE, which is part of aQUEUE. The selective union in the body
of enqueuetherefore overrides theSEQUENCEfields ofq, while not changing the parts
of q that are only defined inQUEUE.

To dequeuean element, wedeletethe element at positioncursor.

dequeue= � q : QUEUE� delete q(q\cursor") j q

4.2 Quadrilaterals

The quadrilaterals example is described in [15]; it is used to compare several different
object-oriented methods based on Z. The example requires specifying different sorts of
quadrilaterals which may be used in a drawing system.

The shapes of interest in the system are: aquadrilateral, the general four-sided
figure; aparallelogram, a quadrilateral that has parallel opposite sides; arhombus, a
parallelogramwith identical-length sides; arectangle, which is aparallelogramwith
perpendicular sides; and, asquare, which is both arectangleand arhombus.

We assume the existence of a classVECTOR. The usual vector operations, such
as addition, are available.VECTORalso has a zero. The edges of a four-sided figure
are defined first as a list,EdgesInt= (0; ::4) ! VECTOR. Then, a class definition is
provided, ensuring that the edges form a closed figure.

EDGES= xe : EdgesInt� (e0 + e1 + e2 + e3 = 0)

A quadrilateral class consists of edges and a position vector, the latter intended to be
used in drawing the quadrilateral on the screen. The class definition ofQUAD is

QUAD= \edges"! EDGESj \pos"! VECTOR

The class hierarchy in the quadrilateral system is depicted in Fig. 2, using BON nota-
tion. Each ellipse represents a class in the system, while directed edges indicate inher-
itance relationships. Inheritance will be defined predominantly on interfaces (though
there are many other ways to use inheritance to specify this system).

QUAD

ParInt

RhomInt RectInt

SquareInt

Fig.2.The class hierarchy

We construct the classes in the system by inheritance. In the process, we add a func-
tion angleto each class, whereangleis the angle between edge0 and1. The hierarchy
is described by first specifying class interfaces. Then, class definitions are provided,
which give further details on constraints specific to each class.

ParInt = \angle"! real j QUAD

RhomInt= ParInt

RectInt= ParInt

SquareInt= RhomIntj RectInt

Renaming of attributes fromParInt in SquareIntandRhomIntdoes not have to be done,
since we need only one occurrence of each ofParInt’s attributes. InSquareInt, it is
expressed that a square is both a rectangle and a rhombus. However, since bothRectInt
andRhomInthave the same class interface, their merge simplifies toParInt.

The derivation hierarchy states that a parallelogram is a quadrilateral, a rhombus is
a parallelogram, et cetera. But there are extra constraints associated with these special-
case quadrilaterals—e.g., that a rectangle is a parallelogram with perpendicular sides.
These constraints can be placed in the class definitions.

SQUARE= xs : SquareInt� IsSquare(s\edges")^ s\angle" = �=2

RECTANGLE= xr : RectInt� IsRect(r\edges") ^ r\angle" = �=2

RHOMBUS= xr : RhomInt� IsRhom(r\edges")^ r\angle" = cos�1(: : :)

PARALLELOGRAM= xp : ParInt � IsPar(p\edges") ^ p\angle" = cos�1(: : :)

We omit the full definitions of theanglemethods ofRHOMBUSandPARALLELOGRAM
(they are in [15]).IsRectis true if and only if the list of edges forms a rectangle (� in the
body ofIsRectis dot product.)

IsRect= � e : EDGES� (e0 � e1 = 0 ^ e0 + e2 = 0)

The predicatesIsSquare, IsPar, andIsRhomare similar. We next define a procedure to
translate a quadrilateral’s position by a vector.

TranslateQuad= � q : QUAD � � v : VECTOR� \pos"! q\pos" + v j q

To build a translation procedure on rhombi, for example, we specializeTranslateQuad.

TranslateRhom= � r : RHOMBUS� � v : VECTOR� TranslateQuad r vj r

The generic quadrilateral initialization method is as follows. It can be reused in the
initializers of the other classes.

InitQuad= � q : QUAD � � e : EDGES� � v : VECTOR� \edges"! e j \pos"! v j q

4.3 A real-time example: gas burner

The gas burner problem has been treated by many researchers [14]. The problem is
to specify the control of a gas burner. The inputs of the burner come from a sensor, a
thermometer, and a thermostat. The inputs are:

– a realtemp, indicating the actual temperature,
– a realdesired, indicating the desired temperature,
– a booleanflame, indicating whether there is a flame.

The outputs of the burner are

– gas, which is set toon if the gas is on, or tooff if the gas is off,
– spark, which maintains the gas and causes a spark for the purposes of ignition.

Heat is wanted when the actual temperature falls� below the desired temperature, and
is not wanted when the actual temperature rises� above the desired temperature.� is
small enough to be unnoticeable, but large enough to prevent rapid oscillation.

To obtain heat, the spark should be applied to the gas for at least1 second (to give
it a chance to ignite and to allow the flame to become stable). A safety regulation states
that the gas must not remain on and unlit for more than3 seconds. Another regulation
states that when the gas is shut off, it must not be turned on again for at least20 seconds
to allow any accumulated gas to clear. And finally, the gas burner must respond to its
inputs within 1 second.

We formulate an object-oriented, real-time specification. Thus, we will need to talk
about time. As discussed in Section 2.3, to talk about time, global time variables are in-
troduced and are manipulated. In a pure OO specification, there are no global variables.
In order to talk about real-time, we therefore formulate a simple class definition,TIME,
which will be used to represent the passage of time over the lifetime of an object.TIME
has one attribute,t, of typereal.

TIME = \t"! real

(TIME can be used to introduce a local clock. To introduce a system clock,TIME can
be inherited by theroot class in our system, from which computation will begin.) We

also specify, implicitly, a functionaddtime, which will be used to describe a nondeter-
ministic increase in time.addtimetakes three real numbersr1; r2; r3, as parameters, and
satisfies the following property.

r1 + r2 � addtime r1 r2 r3 � r1 + r3

The similar specificationtakeone, which takes one real numberr1 as a parameter, will
be used to specify a nondeterministic increase in time ofat mostone second.

r1 < takeone r1 < r1 + 1

The gas burner will be specified as a class. We begin by specifying its interface, giving
the names of the attributes and functions local to the class.

BurnerInt= \temp"! real j \desired"! real j

\flame"! bool j \spark"! bool j \gas"! statusj

\cold"! bool j \hot"! bool j TIME

In its interface, the burner inherits fromTIME. The bunchstatusis status= on; off .
Now, we can define the functions of the class.

BURNER= xb : BurnerInt�

b\cold" = (b\temp" < b\desired"� �) ^

b\hot" = (b\temp" � b\desired"+ � ^ b\flame")

This completes the specification of the burner’s attributes and functions. Now we spec-
ify its procedures.

gas on= � b : BURNER� \gas"! on j b

gas off = � b : BURNER� \gas"! off j b

gas on andgas off are used to turn the gas on or off, on request. The next two proce-
dures,ignite andcutoff, are responsible for igniting the spark of the burner (leaving it
on for between 1 and 3 seconds) and for turning the spark off.

ignite= � b : BURNER� \spark"! > j \t"! (addtime b\t" 1 3) j b

cutoff = � b : BURNER� \spark"! ? j b

Finally, the procedurewait causes the burner to wait for 20 to 21 seconds.

wait = � b : BURNER� \t"! (addtime b\t" 20 21) j b

The behaviour of the burner system can now be specified as two procedures,too hot
and too cold. too cold tests if the temperature is too cold; if it is, the gas is turned
on, and the spark is ignited for at most three seconds, then it is cut off, and the test is
repeated; if it is not too cold, one unit of time is taken, and then the test is repeated.

too cold= � b : BURNER�

if b\cold" then

too hot cutoff ignite gason b

elsetoo cold (\t"! takeone b\t" j b)

too hot is as follows. If the temperature is too hot, then the gas is shut off and the burner
waits for 20 to 21 seconds; then the temperature is tested. If it is not too hot, then one
unit of time is taken, and then the test is repeated.

too hot= � b : BURNER�

if b\hot" then

too cold wait gasoff b

elsetoo hot (\t"! takeone b\t" j b)

The OO specification of the gas burner is then

var b : BURNER� b:too hot _ b:too cold

4.4 A concurrent example: dining philosophers

As a final example, we formulate a simple concurrent and object-oriented specifica-
tion of the dining philosophers synchronization problem. We assume that we have five
philosophers who are either thinking, eating, or hungry. The philosophers are sitting
at a circular table which is laid with only five chopsticks, placed between neighbour-
ing philosophers. From time to time, philosophers get hungry and try to pick up the
two nearest chopsticks. A philosopher can pick up one chopstick at a time, and cannot
pick up a chopstick in the hand of a neighbour. When a hungry philosopher has both
his chopsticks at the same time, he eats without releasing the chopsticks. When he is
finished eating, he puts down both chopsticks and starts to think again.

We commence by assuming that we have a class calledSEMAPHORE, used to rep-
resent the standard synchronization tool. This class has two procedures,semwaitand
semsignal. We also assume that we have usedSEMAPHOREto specify a class called
CONDITION, which specifiescondition constructsfor critical regions. This class has
a queue, for waiting processes, associated with it as well as two procedures:csignal,
which resumes exactly one suspended process, andcwait, which makes the invoking
process wait until another invokescsignal. Formulations of both semaphores and con-
dition constructs can be found in [12]. We will use these classes to specify the mutual
exclusion required in the dining philosophers problem, via amonitor.

A monitor allows safe, effective sharing of objects among several concurrent pro-
cesses. Monitors assure mutual exclusion; only one process at a time can be active
within the monitor. A monitor is a class, consisting of two semaphores,mutex(used to
orchestrate entrance to and exit from the monitor) andnext (on which signaling pro-
cesses may suspend themselves), and a counternext count, which keeps track of the
number of waiting processes. It also has two procedures,enter and leave, used by a
process to enter and leave the monitor. Here is the class definition.

MONITOR= \mutex"! SEMAPHOREj \next"! SEMAPHOREj \next count"! int

Theenterprocedure callssemwaiton themutexsemaphore.

enter= �m : MONITOR� \mutex"! (semwait m\mutex") j m

Similarly, procedureleaveexits the invoking process from the monitor. If the number
of waiting processes is 0,semsignalis called onmutex, and the invoking process leaves
the monitor; otherwise,semsignalis called onnext.

leave= �m : MONITOR�

if m\next count" > 0 then \next"! (semsignal m\next") j m

else\mutex"! (semsignal m\mutex") j m

We next specify a philosopher as a class definition,PHIL. This class has two attributes,
state(recording whether the philosopher is thinking, hungry, or eating), andself, which
is a condition construct used for synchronization (it is used to delay a philosopher when
he is hungry but unable to obtain the needed chopsticks).

PHIL = \state"! Statusj \self"! CONDITION

(The bunchStatusis thinking; hungry; eating.) The procedures forPHIL are used to
change the state of an invoking object to one ofhungryor thinking.

sethungry= � p : PHIL � \state"! hungryj p

setthinking= � p : PHIL � \state"! thinking j p

A philosopher uses theeatprocedure to move to the eating state. A move to the eating
state requires a call to thecsignalprocedure of classCONDITION, which resumes a
suspended process. Thus, a callp:eat (wherep is a philosopher) changes the philoso-
pher’s state toeating, and calls thecsignalprocedure of the philosopher’sself attribute.

eat= � p : PHIL � \self"! (csignal p\self") j \state"! eatingj p

The dining philosophers system is specified as a class,DINING, which is aMONITOR
extended with a list of five philosophers (we use the short-hand[5 � PHIL] for a list of
five philosophers).

DINING = \phils"! [5 � PHIL] j MONITOR

TheDINING system has several procedures. The first procedure we specify,test, takes
a numberk in the range0 � k � 4, moves philosopherk to eatingstatus if possible,
and signals that change in philosopher status to the system. A philosopher can move
to eatingonly if he can obtain both the chopsticks to his sides and he is hungry. We
view this procedure asprivate; it will only be used by other procedures in the dining
philosopher system, and is not an entry procedure of the monitor.

test= � d : DINING � � k : 0; ::5 �

if (d\phils"(k� 1 mod 5)\state" 6= eating^ d\phils"(k)\state" = hungry^

d\phils"(k+ 1 mod 5)\state" 6= eating)

then

\phils"! k! (eat d\phils"(k)) j d

elsed

(Informally, this specification reads “if I am hungry, and my neighbours aren’t eating,
then I will eat, otherwise, I won’t change.”)

The procedureputdownis used when the philosopher is finished eating. The proce-
dure puts philosopheri into athinkingstate (i.e., the chopsticks are dropped). Then, the
testprocedure is applied to both of the neighbours of philosopheri, to see if they can
start to eat.

putdown= � d : DINING � � i : 0; ::5 �

test

(test(\phils"! i ! setthinking d\phils"(i) j d) (i � 1 mod 5))

(i + 1 mod 5)

The first argument of the inner-mosttestcall sets philosopheri to thinking;testis then
applied to the neighbours: philosopheri � 1 mod 5, then philosopheri + 1 mod 5.
However, this specification ofputdownignores synchronization issues. In order for a
call toputdownto synchronize with the actions of all other philosophers,putdownmust
be embedded in synchronization primitives; that is, the process must enter the monitor,
then it may execute, and then it leaves the monitor. This is expressed in the procedure
entry putdown.

entry putdown= � d : DINING � � i : 0; ::5 � leave(putdown(enter dj d) i) j d

The procedurepickup sets a philosopher tohungry, then attempts to pickup the
chopsticks. If the attempt succeeds, he eats, but if he cannot pickup the chopsticks, he
suspends himself by a call to thewait procedure of classDINING.

pickup= � d : DINING � � i : 0; ::5 �

wait (test(\phils"! i ! sethungry d\phils"(i) j d) i) i

The first argument totestsets philosopheri to hungry, then tests him. Either this call
succeeds and the philosopher eats, or it returns and he waits.wait is as follows. If
philosopheri is eating, it does nothing. Otherwise (if the philosopher is thinking or
hungry) it callscwait on the philosopher, delaying him.

wait = � d : DINING � � i : 0; ::5 �

if (d\phils"(i)\state" = eating) then d

else\phils"! i ! \self"! (cwait d\phils"(i)\self") j d

As was the case withputdown, the specification ofpickup ignores synchronization.
Thus, we must extendpickupwith synchronization details, i.e., make it an entry proce-
dure of the monitor. This is expressed in procedureentry pickup.

entry pickup= � d : DINING � � i : 0; ::5 � leave(pickup(enter dj d) i) j d

The initialization of theDINING class will be to set all philosophers to thethinking
state, and to initialize the monitor (which amounts to initializing the semaphores).

init = � d : DINING � \phils"! 0! setthinking d\phils"(0) j

\phils"! 1! setthinking d\phils"(1) j

\phils"! 2! setthinking d\phils"(2) j

\phils"! 3! setthinking d\phils"(3) j

\phils"! 4! setthinking d\phils"(4) j

\mutex"! 1 j \next"! 0 j d

The dining philosophers system can then be specified as follows. We first declare an
object,d, of type DINING. The object must be initialized, and then it will enter an
indefinite concurrent iteration.

var d : DINING � d:init: iterate

where

iterate= (ki:0;::5 d:entry pickup(i): Eat: d:entry putdown(i)): iterate

The procedureEat performs the activity of eating the food; we leave it unspecified.
This specification will not allow deadlock, nor will it allow two neighbours to eat si-
multaneously. However, it is possible for a philosopher to starve to death. We leave the
amendment of this as an exercise for the reader.

5 Discussion and Conclusions

That the predicative programming notation can be used to directly specify many key
object-oriented concepts is not surprising, since the notation is sufficient to model any
form of computation. Without having to change the notation, we can express key object
concepts and still make use of the standard predicative method and all its features, such
as timing, concurrency, and refinement.

Part of the reason for the simplicity of specifying object-oriented concepts is due
to the bunch notation for types. In the predicative notation, all types are based upon a
bunch representation, including lists and records. Because of this, classes and functions
can be developed from bunch notation, and therefore object instantiation can be given
its usual interpretation as variable declaration. This differs from the approach in [4],
where objects are specified in terms of their effect on a global system state. Further-
more, inheritance can be given an interpretation akin to that which is available in many
programming languages. The interpretation, as selective union, is easy to implement in
any programming language that has lists, arrays, or records (overriding of a field can be
implemented as assignment to the field of a record instance).

The formalization of OO concepts is not without limitations. Visibility and export
of features is left entirely up to the discipline of the specifier; there is no equivalent to
C++’s public or private notation, nor Eiffel’sexport clause. Further, it might be
useful to be able to include procedures within a class definition (though see Utting [16],
who argues that non-encapsulation of procedures is useful), but it is not possible within
the existing type system of predicative programming. Encapsulation of procedures is

left informal, based on the signatures of the features. However, procedures can be spec-
ified, and are associated with objects and classes by type rules: procedures associated
with a class are only (consistently) applicable to objects of that class or of a child class.
Misusing procedures results in unsatisfiable specifications.

A key benefit of using predicative programming to specify and reason about object-
oriented systems, is that all existing predicative theory applies immediately to such
specifications. This implies that we can specify and reason about key object-oriented
concepts, as well as the real-time, interactive, concurrent, and timing characteristics
of systems, using one notation and method, as the examples in Section 4 showed. A
heterogeneous notation, in the sense of [10, 13], does not have to be created in order to
integrate the concepts of OO, real-time, and concurrency.

In the future, we intend to work on improving and extending the object-oriented
theory, and will formulate examples that combine use of OO and predicative program-
ming’s communication features.

Acknowledgements.We thank the reviewers for their very detailed comments. We
thank NSERC for support.

References

1. M. Abadi and L. Cardelli.A Theory of Objects, Springer-Verlag, 1996.
2. A. Bunkenburg and J. Morris. Formal Bunch Theory. Draft.
3. R. Duke, G. Rose, and G. Smith. Object-Z: A Specification Language advocated for the

description of standards.Computer Standards and Interfaces17(5), 1995.
4. A. Hall. Specifying and Interpreting Class Hierarchies in Z. InProc. Eighth Z User Meeting,

Workshops in Computing Series, Springer-Verlag, 1994.
5. E.C.R. Hehner. Bunch Theory: A Simple Set Theory for Computer Science.Information

Processing Letters12(1), 1981.
6. E.C.R. Hehner.A Practical Theory of Programming,Springer-Verlag, 1993.
7. K. Lano.Formal Object-Oriented Development, Springer-Verlag, 1995.
8. B. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: an introduction to TCOZ. In

Proc. ICSE ’98, IEEE Press, 1998.
9. B. Meyer.Object-Oriented Software Construction,Second Edition, Prentice-Hall, 1997.

10. R.F. Paige. Heterogeneous Notations for Pure Formal Method Integration.Formal Aspects of
Computing10(3):233-242, June 1999.

11. R.F. Paige. Integrating a Program Design Calculus and UML. To appear inThe Computer
Journal, 1999.

12. A. Silberschatz and P. Galvin.Operating System Concepts5e, Addison-Wesley, 1997.
13. G. Smith. A Semantic Integration of Object-Z and CSP. InProc. FME’97, LNCS 1313,

Springer-Verlag, 1997.
14. E.V. Sorenson, A.P. Ravn, and H. Rischel. Control Program for a gas burner, Technical Re-

port ID/DTH EVS2, Computer Science Department, Technical University of Denmark, Lyn-
gby, Denmark, 1989.

15. S. Stepney, R. Barden, and D. Cooper.Object-Orientation in Z, Springer-Verlag, 1992.
16. M. Utting.An Object-Oriented Refinement Calculus with Modular Reasoning.PhD Disser-

tation, University of New South Wales, October 1992.

