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[1] Hello.  I'm Eric Hehner, from the computer science department, of the University of 
Toronto.  I want to talk to you about algebra, about the symbols and notations used in 
algebra, and about the way the subject is taught and explained, and about how algebra can 
be put into practice.  I'm going to end with something called Unified Algebra, but to start 
with, I'll tell you about Boolean Algebra. [2] Boolean Algebra is the simplest kind of 
algebra.  It has just [3] two values, and there are [4] very few operations you can perform on 
those two values.  Each operation is defined by a [5] small table, saying what the result is 
for each combination of operand values.  Boolean Algebra is taught in [6] university in an 
optional course.  You don't have to learn Boolean Algebra even in the mathematics 
department.  And what's it good for? [7] Its original application was for reasoning about true 
and false statements.  It's used in mathematical proofs, where the two values represent 
theorems and antitheorems.  In circuit design where the two values represent high voltage 
and low voltage.  I use it all the time for specifications to describe satisfactory and 
unsatisfactory computer behavior.  Programmers use Boolean expressions after the word if, 
and while.  I've seen it used in law, where the two values are innocent and guilty.  Boolean 
Algebra applies to anything that comes in two kinds. So who uses Boolean Algebra?  Well, I 
do, but in the world at large, [8] in the general population, I would say very few people;  
almost nobody.

Now [9] let's look at number algebra.  It has [10] infinitely many values and 
operators, and even the simplest number operation, which is counting, is defined by 
induction.  Real numbers are defined by limits.  This is way more complicated than Boolean 
Algebra.  So when do we learn it? [11] In primary school.  What is it used for? [12] 
measurement of any kind of quantity.  And who uses it? [13] cashiers, architects, 
manufacturers, farmers, financial planners, scientists, -- everybody.  Why is number algebra 
so much better known and used than Boolean Algebra?  Maybe we need to look back in 
history for that answer. [14] After numbers were invented, but before algebra was invented, 
there were certainly problems that needed to be solved, but without algebra to solve them, 
they were probably solved by trial and error.  For example, if someone needed to divide up 
their three goats and 20 chickens equally between two people, and it was agreed that a goat 
is worth 8 chickens, then perhaps they [15] drew a line, and then started moving the goats 
and chickens around [16] until they found a solution.  To verify that it is a solution, you just 
need a little arithmetic.  But to find a solution without moving goats and chickens around, 
you need algebra.

[17] Here are two pages from the earliest known book of algebra in the English 
language.  It says it is [18] the rule of equation, commonly called algebers rule.  It talks 
about [19] nombers denominate, which are numbers, and nombers abstracte, which are 
variables.  It's written as a dialogue between a scholar and a master. [20] Here are the next 
two pages.  There's something very famous right [21] here, which I'll read to you.  And to 
avoid the tedious repetition of these words -- is equal to -- I will let, as I do often in work 
use, a pair of parallels, gemove lines, that means twin lines, of one length, thus, and then 
there are the lines, because no two things can be more equal.  That's the invention of the 
equal symbol, although it's way too wide.  Then there's some algebra, and then [22] some 
discussion.  I'll read a bit.  In the first, there appeareth two nombers, that is, 14x plus 15y.  I 
have it written out [23] so it's easier to read, and even [24] easier if I use a modern font.  It 
says:  In the first there appeareth 2 nombers, that is  14x + 15y  equal to one nomber, which 
is  71y .  But if you mark them well, you may see one denomination, on both sides of the 
equation, which never ought to stand.  Wherefore abating, that means subtracting, the lesser, 
that is  15y  out of both the nombers, there will remain  14x = 56y  that is, by reduction,  1x 
= 4y .
Scholar.  I see, you abate  15y  from them both.  And then are they equal still, saying they 
were equal before.  According to the third common sentence, in the pathway:  If you abate 
even portions, that means equal portions, from things that be equal, the parts that remain 
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shall be equal also.
Master.  You do well remember the first grounds of this art.
It's a long explanation saying it's ok to subtract the same amount from both sides of an 
equation.  That's a special case of the transparency law.  Later they want to add the same 
thing to both sides of an equation, so there's another long discussion, and then they say If 
you add equal portions, to things that be equal, what so amounteth of them shall be equal.

Each step in an abstract calculation is accompanied by a concrete justification.  For 
example, we have the Commutative Law [25].  I'll make that [26] easier to read.
When the chekyns of two gentle men are counted, we may count first the chekyns of the 
gentleman having fewer chekyns, and after the chekyns of the gentleman having the greater 
portion.  If the nomber of the greater portion be counted first, and then that of the lesser portion, 
the denomination so determined shall be the same.  This version of the Commutative Law 
includes an unnecessary case analysis, and it has missed a case:  when the two gentlemen have 
the same number of chickens, it does not say whether the order matters.  Here's the Associative 
Law.  Well, you can read it if you want to.  The point is that for each simple step in a calculation, 
there's a lot of discussion. [27] The discussion is needed to reassure people that it's ok to apply 
the law.  That's because [28] the algebra was not trusted.  And that's because [29] algebra 
replaces meaning with symbol manipulation.  We're supposed to be talking about goats and 
chickens, not x's and y's. [30] Those who were skilled at informal reasoning, that means natural 
language reasoning, thought that it helps your calculation to think about the goats and chickens.  
And, as usual in any [31] advance, the experts, the people who are most skilled in the old way, 
are the least likely to appreciate the advance. [32] Today, each step in a calculation is justified by 
an algebraic law, not by discussing the objects that the calculation is talking about. [33] And 
that's how we can go farther, faster, more succinctly, and with more certainty, in our quantitative 
reasoning.

[34] Here's a modern proof from a book on my shelf.  It doesn't matter what this proof is 
about.  I just want to [35] point out that there's some good sequences of the use of algebraic laws.  
The proof is actually two pages; [36] here's the second page, and you see lots more good algebra 
going on here.  This algebra is talking about elements of rings and fields.  But there's a second 
calculation going on [37] in the words in between the formulas.  It's a boolean calculation.  
Since, and from which, and this would imply, and contradicting, and so on.  These can all be 
formalized as boolean expressions, and the whole proof turned into one boolean algebra 
calculation, with subexpressions about ring and field elements.  But mathematicians don't like to 
write their proofs formally because that would replace meaning with symbol manipulation.  They 
think it helps to think about and talk about the objects that the proof is about.  Especially the 
mathematicians who are best at writing informal proofs.  Right now, boolean algebra is where 
number algebra was 5 centuries ago.  If we could start to trust it and use it, we could go farther, 
faster, more succinctly, and with more certainty than today's informal, wordy arguments.

[38] We've all done number algebra since high school.  The problem here is to simplify 
an expression.  So we apply some laws, line by line, until we get the simplest equivalent 
expression we can find. [39] It doesn't have to be all equal signs on the left side of the page. Well, 
then we can't call it simplification, so I'll call it calculation.  Here we calculate that x times x plus 
2 is greater than or equal to minus one. [40] Boolean calculation is similar.  We just apply laws, 
line by line.  In this calculation, we can say [41] we are simplifying the top line to true.  
Simplifying to true is exactly what [42] proving is. [43] Here's an example that doesn't have all 
equal signs on the left side.  The calculation shows that the top line is implied by true, and that's 
also proof. [44] Next we have a mixture of boolean and number algebra.  You don't need to look 
at everything.  The top line is a conjunction of equations, so we're solving simultaneous 
equations.  The bottom line is a conjunction of simple equations, and that's a solution.  On the 
left side, it isn't all equal signs, so this may not be the only solution.  Actually, it's all equations 
down to the next-to-bottom line, and we see there that there are two solutions.  Anyway, the point 
I'm trying to make, [45] is that simplifying, proving, and solving are all the same.  They are all 
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calculation.
[46] The terminology that is in use for algebra is confusing.  There are terms, and they 

have values, and separately there are formulas or propositions or sentences and they don't have 
values.  Instead they are true or false. [47] There are operators like plus and times that operate on 
terms.  And there are connectives like and and or that join formulas.  And to make things more 
complicated, [48] terms can be boolean, so they have values true and false, which is different 
from being true or false.  And then there are [49] predicates, but I'm not sure what the definition 
of predicate is traditionally.  There are [50] at least three different equal signs, and although they 
all have identical algebraic properties, namely they are reflexive, symmetric, transitive, and 
transparent, there's supposed to be some sort of philosophical difference between them. [51] 
Here's an example.  a  and  b  are boolean variables, plus is a boolean operator called disjunction, 
a plus b  is a boolean term which has value true or false, a plus b equals a  and  a plus b equals b  
are formulas, so they are true or false, and finally the v is a logical connective.  It doesn't have to 
be that complicated. [52] If I ask students to prove that some expression a is equivalent to some 
other expression b, they give it a try. [53] But if I ask them to prove a exclusive or b they don't 
know what I'm asking.  That's because exclusive or isn't a verb. [54] If I write a exclusive or b is 
equivalent to true, they're ok, because now they have a verb, even though equating to true is an 
identity operation, like adding zero or multiplying by one.  Or I can just change the exclusive or 
symbol to [55] is not equivalent to they're ok, even though that's exactly the same operation.  
Now if [56] I equate that to true they're in trouble again because there are too many verbs. [57] 
You see the same thing in programming texts where they write while flag equals true do 
something.  It would be equivalent, simpler, and more efficient to write: while flag do something, 
but that doesn't sound good.  If our mathematics has to conform to English grammar, or any 
natural language, it won't serve its purpose, which is to replace the vagueness, ambiguities, 
wordiness, and inconsistencies of natural language with a language that's concise and consistent 
and designed for calculation.

[58] The notations of number algebra are standard.  All over the world, people from the 
age of eight onward are familiar with expressions like 738+45=783.  But there isn't any standard 
for boolean algebra notations, not even for the two boolean values.  Sometimes it's true and false, 
or T and F, or one and zero, and I've even seen one and zero the other way around, which is 
confusing. [59] Quite often the arithmetic symbols are used, with plus for disjunction, and minus 
for negation, and just putting things next to each other for conjunction.  So here are some 
boolean laws. [60] The first law looks ok because it's the same for number algebra, but these [61]
three clash with number algebra.  They are not laws of number algebra. [62] In this one, I needn't 
have written equals 1, but I did just to give it a verb. [63] A lot of mathematicians would say: 
who cares, just choose some symbols and get on with it.  But mathematicians have to apply the 
laws, and to do that they have to recognize the patterns, and know when the law matches the 
expression you have, and that means the laws have to be familiar.  And we want to be able to mix 
arithmetic and boolean variables and operators in the same expression, as we did in the mixed 
calculation a few pages ago.  But we can't if we reuse the arithmetic symbols for boolean algebra 
in this way because it causes ambiguities. [64] Using the words true and false for the boolean 
values is just as clumsy as using words for numbers.  And it identifies these boolean values with 
one of the many application areas of boolean algebra. [65] I would like to suggest the top and 
bottom symbols.  They are neutral and equally applicable to all application areas.  True and false, 
theorem and antitheorem, power and ground, and so on. [66] Now let's look at the way 
implication has been treated.  There are all these symbols.  And there's always confusion about 
the meaning of implication when the antecedent is false. [67] For example, “If my mother had 
been a man, I'd be the king of France.”.  That's a famous quotation. [68] Even the chair of 
electrical engineering and computer science at Berkeley can get it wrong.  He said: if the garage 
door is open and the car is running, then the car can be backed out of the garage.  He says it 
means if either or both are false, then the car cannot be backed out.  But that's not what it means.  
It means if they're both true, the car can be backed out, and doesn't say what can or can't happen 
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if either or both are false. [69] In my area, formal methods, the Z and B specification languages 
both got it wrong too.  But if we stop identifying the boolean values with true and false, 
implication becomes [70] easy.  It is the boolean ordering.  Bottom is lower than or equal to top.  
That's implication.

[71] Now I want to talk a little about the design of mathematical symbols.  One principle 
is symmetry.  We should make a symmetric symbol for a symmetric operator, and an asymmetric 
symbol for an asymmetric operator.  That's not just esthetics. [72] That saves us from having to 
learn so many laws.  The principle says:  just writing it all backwards is equivalent.  Well, I didn't 
turn the variables backwards, but all the operators are turned backwards. [73] Mathematics has 
followed that principle for some operators, but not for others.

[74] Now here's a similar principle.  Duality.  You make self-dual operators vertically 
symmetric, and the others are not vertically symmetric. [75] Now when you turn an expression 
upside down, you are negating it.  Well, we don't turn variables upside down so we have to 
negate them.  This is a generalization of deMorgan's laws. [76] Again, mathematics has followed 
that principle for some operators, but not for others.  The benefit we would get from following 
these two principles is to turn lots of laws into trivial visual transformations.  And that would 
make algebra easier.

[77] Some boolean expressions are laws.  That means, no matter what values the 
variables have, the expression has value top.  And some boolean expressions are unsatisfiable.  
That means, no matter what values the variables have, the expression has value bottom. [78] In 
between, there are boolean expressions that have value top for some values of the variables, and 
bottom for other values of the variables.  Finding an assignment of values for the variables that 
gives an expression the value top is called solving.  The expression might be an equation, but it 
could also be any other boolean expression.  Solving has been the driving force for much of 
mathematics.  You choose an unsatisfiable expression, and you say, what a pity that it doesn't 
have any solutions.  Let's give it one.  For example, [79] when the only numbers were the natural 
numbers, the equation x plus one equals zero didn't have a solution.  So we just give it a solution, 
which we call minus one, and we invent the integers. [80] The equation x times 2 equals one 
doesn't have an integer solution, so we give it one by inventing the rational numbers. [81] x 
squared equals two doesn't have a rational solution, so we invent the real numbers. [82] x 
squared equals minus one doesn't have a real solution, so we invent the complex numbers. [83] 
That's what happened historically, and it's also the progression we go through when we teach 
mathematics. [84] As we gain solutions, we lose laws.  x plus 1 not equal to 0 was a law of the 
natural numbers, but it's not a law of the integers.  And so on. [85] There are people who say that 
the naturals are a subset of the integers, and the integers are a subset of the rationals, and so on.  
And there are other people who say the integers are not a subset of the rationals, but isomorphic 
to a subset.  Personally, I don't care.  I do care what the laws and solutions are.  And I care that 
we use the same notation for natural one and integer one and rational one and real one and 
complex one, because I don't want to have to learn all the solutions and laws over again for each 
domain. [86] One plus one equals 2, whether those are natural numbers or complex numbers.  All 
laws of complex arithmetic that can be interpreted over the naturals are laws of natural 
arithmetic.  And all boolean expressions over the natural numbers have the same solutions over 
the complex numbers.  Because we are using a unified notation as we enlarge or shrink the 
domain, I don't have to relearn all the laws and solutions.

And that's the reason I want to unify boolean algebra with number algebra.  We already 
know that using one and zero for the booleans doesn't work;  the laws clash.  For the unification 
that works, I need to extend the numbers with an infinite value. [87] Top is unified with infinity, 
and bottom with minus infinity.  Boolean negation is number negation.  Boolean conjunction is 
number minimum.  Boolean disjunction is number maximum.  Implication is ordering, as I 
already said earlier.  Equivalence is equality, and exclusive or is inequality. [88] Now every 
number law that employs only these symbols corresponds to a boolean law.  This is just a 
random sample of laws. [89] Look at this law.  On the left, it says that anything implies true, or 
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top.  On the right, it says that anything is less than or equal to infinity. [90] And this one, on the 
left, says that false implies anything.  And on the right it says that minus infinity is less that or 
equal to anything. [91] And these two.  On the left, those are deMorgan's laws.  And they have 
exactly corresponding number laws.  But I don't want to have to learn all the laws and solutions 
twice.  So I [92] unify the notations.  I'm going with top and bottom, for both boolean algebra 
and for number algebra.  I shouldn't say both, because I am unifying the algebras.  There's only 
one algebra, with one set of symbols.  The two sides here are showing the terminology from the 
two algebras that are being unified. [93] The negation sign is ok for both sides. [94] Conjunction 
is the minimum of its operands, and disjunction is the maximum of its operands.  You might like 
to pause this video and think about that for a minute. If you don't like the direction these symbols 
are pointing, think of it this way: minimum has its arms pointing down, and it doesn't hold water; 
maximum has its arms pointing up and it does hold water. [95] Nand and nor don't have any 
standard symbols, so I made nand look like a combination of minimum and negation, and nor 
looks like a combination of maximum and negation. [96] I've already said that implication is just 
the boolean ordering.  Bottom is less than or equal to top.  I've gone with the arithmetic symbols 
for ordering [97] because that gives us three more comparisons, which are standard for numbers, 
but they've never been given symbols or names in boolean algebra.  They've been treated like a 
dirty secret that we don't ever talk about. [98] The standard equal sign is perfectly good for 
booleans and numbers. [99] For unequals, I just stood up the slash, because now, all symmetric 
operators have symmetric symbols, and all asymmetric operators have asymmetric symbols.  I'm 
sorry to say duality isn't respected.  I would have had to stray too far from standard for the last 
six operators for that.

This is the unification that allows the greatest number of boolean laws to be interpreted as 
number laws. [100] For example, this is a boolean law.  If a then b else c is the same as a and b 
or not a and c.  If b and c are numbers, it's still a law,  just like in a lot of programming 
languages. [101] Here are two laws written in traditional boolean notations.  They are called 
antidistributive laws, and they give people trouble because conjunction changes into disjunction, 
and vice versa.  The first says that a and b implies c is the same as a implies c OR b implies c.  
The second says that a or b implies c is the same as a implies c AND b implies c.  And that 
doesn't sound right to some people. [102] But in unified algebra, the first says that the minimum 
of a and b is less than or equal to c when at least one of a or b is less than or equal to c, and the 
second law says that the maximum of a and b is less than or equal to c when both a and b are less 
than or equal to c.  That sounds right.  And these are laws for all numbers, not just the booleans. 
[103] Here's a little calculation that's not hard to understand.  We start with x minus y.  That 
expression varies directly with x and inversely with y.  From the first line to the middle line, 
we're increasing x to x plus one, so that increases x minus y.  From the middle line to the bottom 
line, we're decreasing y to y minus one.  We're subtracting less, so again the expression increases. 
[104] Here's a very similar calculation.  The top line says x is greater than or equal to y.  That 
expression varies directly with x and inversely with y, just like x minus y.  So again, if we 
increase x to x plus one, we increase the whole expression, and if we decrease y we increase the 
whole expression.  If you're having trouble with this calculation, try reading the symbols on the 
left as implies.  x is greater than or equal to y implies that x plus one is greater than or equal to y, 
and that implies that x plus one is greater than or equal to y minus one.  With unification, boolean 
reasoning becomes the same as arithmetic reasoning.

[105] Here's how I think mathematics should be taught.  We start with the simplest 
algebra there is.  That's boolean algebra, and these are all its symbols.  They are all defined with 
a small table of values.  And of course we show lots of real world applications, and we practice 
simple calculations. [106] Then, when we're ready, we introduce a third value, zero, in between 
top and bottom.  We keep all the same symbols as before, and add a few more.  Now the 
applications are whatever has three values, like yes, maybe, and no, or large, medium, and small.  
By adding a new value, we gain solutions that we didn't have before, and therefore we lose some 
laws that we had before.  But we also gain laws that use the new symbol.  We could add one 
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more value, or [107] maybe at this point we add in all the natural numbers, and some operations 
on them.  Since we already have negation, that gives us all the integers.  [108] Then we add in 
division, and we have the rationals, always gaining solutions.  We lose a few old laws, and we 
gain laws that use the new symbols.  It's the standard development of mathematics, but starting 
with the simplest algebra.

[109] Somewhere in the development of mathematics, we introduce functions.  The 
notation Alonzo Church used in 1930 was like this.  A variable is introduced;  here it's n.  Then 
its domain;  here it's the natural numbers.  And then the body of the function.  So this is the 
successor function on the naturals, mapping n to n+1.  The hat notation comes from Russell and 
Whitehead's Principia Mathematica, and its purpose is to show the scope of the variable.  But a 
hat is typographically inconvenient, especially when the body of the function is a long 
expression.  So the typesetter convinced Church [110] to move it down in front, because the 
typesetter had a Greek lambda symbol.  But the typesetter didn't have enough capital lambdas, so 
[111] small lambdas were used, and that was the birth of the lambda calculus.  Unfortunately, 
that doesn't serve the purpose that the hat was for;  it doesn't show the scope of the variable. So 
[112] I'm using this notation for functions. The angle brackets do show the scope, and they're 
sort-of sideways hats.

The only job of a function is to introduce a variable, so now we can unify [113] all those 
notations that introduce dummy variables.  I'll call them all quantifiers.  It just means applying an 
operator to a function.  Applying plus to a function sums the values of the function, so that 
replaces the big sigma notation.  Applying times replaces the big pi notation.  Applying 
minimum gives you the minimum value of the function, and if the body happens to be boolean, 
that's the for-all quantifier.  Applying maximum gives you the maximum value of the function, 
and if the body happens to be boolean, that's the existential quantifier. [114] And we can do 
parities and set formation and limits and integration the same way, but I won't get into that in this 
talk.

[115] If function f has domain D, then the function that maps variable x in domain D to f 
of x is just f. [116] So the sum, as x varies over D, of f of x can be written as just plus f. [117] 
Similarly the minimum, as x varies over D, of f of x can be written as minimum f.  Well, if f has 
a boolean result, which we usually call a predicate, the left side of this equation is traditionally 
pronounced: for all x in D, f of x. [118] And the maximum, as x varies over D, of f of x can be 
written as maximum f.  If f has a boolean result, the left side is traditionally pronounced: there 
exists x in D, such that f of x. But the right side is a much neater way to write it. [119] Here are 
deMorgan's laws, written traditionally. [120] In unified algebra we write them this way.  Or even 
more briefly, [121] this way.  It says that the negation of a universal quantifier is the existential 
quantifier of the negated operand.  But f might have a numeric result, so it says the negation of 
the minimum f value is the maximum of the negated f values. [122] In traditional notations, the 
law of specialization says that if f is true for all values, then in particular, f is true of y.  And 
generalization says that if f is true for y, then there exists a value for which f is true. [123] In 
unified algebra, it looks like this, and we can write it more briefly like [124] this.  It says that the 
minimum f value is less than or equal to any f value, and any particular f value is less than or 
equal to the maximum f value. [125] The main point is that these laws hold for all numbers, 
including the booleans.  I'm subtly trying to get you to think of the booleans as numbers, but not 
in the traditional sense of zero and one;  they're numbers in the unified algebra sense of bottom 
and top so that they share laws and solutions.

[126] Here's a standard step in a basic number calculation.  We're finding the minimum 
value of function f with y subtracted from each function value.  The function has some nonempty 
domain, but I didn't bother to write it.  The calculation step is factoring.  We don't have to 
subtract y from each function value. [127] Instead, we can find the minimum function value and 
subtract y from that.  And we can write it [128] briefly as in this bottom line. [129] Here's a 
similar calculation.  The traditional reading of the top line is: for all x, f of x is greater than or 
equal to y.  Now we [130] factor out greater than or equal to y.  It says the minimum function 
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value is greater than or equal to y.  And that can be written [131] more briefly.  On the top line, I 
pronounced the quantifier as for all.  On the middle line, I pronounced it as minimum.  But it's 
the same operator.  It doesn't matter whether it's applying to a boolean function body, as in the 
top line, or a number body, as in the middle and bottom lines.  The law is the same as the 
subtraction example;  just factoring.  Or maybe f is a boolean valued function, and y is boolean, 
and that greater than or equal to sign is reverse implication. It doesn't matter;  it's a law no matter 
what's boolean and what's numeric. [132] Here's another subtraction example, but this time 
factoring out the other side.  In the top line, we're finding the minimum value of y minus each 
function value.  When we [133] factor out this side, minimum changes to maximum.  We take the 
maximum of the function values and subtract that from y.  And we [134] can write it more 
briefly.  The minimum difference between y and f of x equals the difference between y and the 
maximum f of x. [135] Here's a similar calculation.  The top line might traditionally be read:  for 
all x, y is greater than or equal to f of x.  Or it might be saying: for all x, y is implied by f of x. 
[136] This line might be saying y is greater than or equal to the maximum f value.  Or it might be 
saying y is implied by the existence of an x such that f of x is true.  Since it's all the same law, I 
want to get rid of all the different ways of saying it, and settle on one terminology, one way of 
saying it.

[137] Here is another example.  The first expression says for all x and y, P of x implies Q 
of y.  The other expression says exists x such that P of x implies for all y Q of y. And the question 
is whether these two expressions are equivalent.  Well, are they?  It's not obvious to me.  How 
would you even start to answer?  People start by saying something like: suppose some x has 
property P.  Or suppose all y have property Q.  And then they consider various special cases.  It's 
an inefficient, wordy, and uncertain way to reason.  Let's [138] look at it in unified algebra.  The 
first expression is this one. [139] We just factor P x less than or equal to out the left side of the 
inner function, and then [140] factor less than or equal to minimum Q out the right side, and 
we're done.  Better than that, we've proven something more.  Because we could be talking about 
numbers.  The top line says that all the P values are below or equal to all the Q values.  And the 
bottom line says that the maximum P value is below or equal to the minimum Q value.  And 
that's the same.

[141] My next example is about lists. We can read this as saying the sum of a list divided 
by the length of the list is less than or equal to the maximum value in the list.  In other words, the 
average value is less than or equal to the maximum value.  Now [142] a quick calculation, which 
I won't read, and we get to the bottom line, which I will read.  It says: if the total number of 
things is more than the number of places to put them, then there's a place with more than one 
pigeon in it.  In a couple of steps we go from saying the average is less than the maximum to the 
pigeon-hole principle.  On the top line I said less than or equal to, and on the bottom line I 
pronounced it if then.  And what I called maximum on the top line, I said exists on the bottom 
line.

[143] Here's my last example.  Suppose f is a function from the natural numbers to the 
real numbers.  In traditional notation, the left side says that each f value is less than or equal to 
the next one. So f is a nondecreasing function.  Let's say, an ascending function.  The right side 
says that the first f value, f zero, is the minimum f value.  It says that if f is ascending, then f 
starts with its minimum value.  For a reason that will become clear in a moment, I want to 
weaken that to say f zero is [144] less than or equal to the minimum value.  Now, [145] in unified 
algebra, it can still be read as saying that if f is an ascending function, then its first value is less 
than or equal to its minimum.  The reason I changed to less than or equal is so that I can apply 
[146] the portation law.  You might be familiar with this law [147] in boolean form.  Or you 
might be familiar with it from type theory.  It's the same law. [148] Applying it, I get this.  And if 
f happens to have a boolean range, then I can read it as follows.  If f is true of 0, and furthermore 
if f of n implies f of n plus one, then f is true of all naturals.  It's induction.  In one step, we show 
the equivalence between induction and the first item in a nondecreasing sequence is its 
minimum.
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[149] This video comes from the paper “from Boolean Algebra to Unified Algebra”, 
which you can find on my website.  There's more in the paper that I haven't talked about, but the 
main point is that [150] there is a big advantage to unifying boolean algebra with number 
algebra, namely, they share laws and solutions.  It's exactly the same motivation for unifying 
naturals with integers with rationals with reals with complex numbers, which we have already 
done.  And we can [151] also unify values and types, and unify functions with function spaces.  
And in general unify logic and algebra.  If you want to know how, [152] have a look at my paper 
on unified algebra.  In it I present a development of algebra, with all the laws, all the way from 
the booleans to the reals. [153] Another take-away from this talk is that simplifying, solving, and 
proving are all the same.  They are all just calculation. [154] In the future, I would like to see 
unified algebra become a tool that lots of people use routinely, not just something that 
mathematicians study.  And for that to happen, [155] it has to be learned early, practiced, and 
applied.

I hope you found my talk interesting.


