
ERGO on a Page (v1.5)

The ERGO File
An ERGO file for an application typically has three parts: a basic
action theory, the definitions of some ERGO procedures (using
define as usual), and an optional robotic interface. These three
parts are described further below, and may be loaded from other
files by using include. The ERGO file usually ends with a main
function that calls ergo-do or one of the planning functions:

(define (main) (ergo-do [#:mode mode] pgm))

The pgm here is an expression that evaluates to an ERGO
program. If the execution mode is specified, it should be one of
’offline, ’first (the default), or ’online. (The robotic interface
part is needed only when the mode is ’online.)

Using Scheme
Within an ERGO file, ERGO can be intermingled with Scheme
variables and function definitions that appear in the usual way.
In what follows, we use “fexpr” to mean any Scheme expression
where the fluents of the basic action theory (see define-fluents
below) may appear as global variables.

Running ERGO
Once ERGO has been properly installed, it is possible to call the
main function in an ERGO file called my-ergo-app.scm as follows:

> racket -l ergo -f my-ergo-app.scm -m

Basic Action Theory
A basic action theory has definitions for the fluents and actions.

Fluents
The fluents of a basic action theory are defined using one or more
expressions in the file of the form

(define-fluents

fluent ini
· · ·

fluent ini )

where each fluent is a symbol and each ini is a Scheme form that
provides the value of the fluent in the initial state. This has the
effect of defining the fluents as global variables that can then be
used later in fexprs for actions and programs.
Any valid Scheme datum can be used as the value of a fluent,
including lists, vectors, hash-tables, and functions.

Actions
Each action is defined by an expression of the following form:

(define-action action
fluent fexpr
· · ·

fluent fexpr )

The fluents listed are those that are considered to be changed by
the action. The value of the fluent after the action will be the
value of the corresponding fexpr before the action. (All changes
are considered to be done in parallel.)
The action in the definition can be a symbol or a list of symbols
(name var . . . var) for an action with parameters..
In addition, the fluent can be the special symbol #:prereq or
#:sensing, in which case, the corresponding fexpr defines the
prerequisite or sensing result of the action.
The define-action expression has the effect of defining the
action itself as a global variable whose value is the action symbol
(or a list of the action symbol and its arguments).

ERGO Programs
Each of the following expressions evaluates to an ERGO program:

:nil

The program that always succeeds.

:fail

The program that always fails.

(:test fexpr)
Succeed or fail according to whether or not the current
value of fexpr is true.

(:act action)
Fail if the action has a prerequisite that evaluates to false,
but succeed otherwise, and move to a new state where the
fluents are updated as per its define-action (see above).

(:begin pgm . . . pgm)
Sequentially perform all of the programs.

(:choose pgm . . . pgm)
Nondeterministically perform one of the programs.

(:if fexpr pgm1 pgm2)

Behave like pgm1 if the current value of fexpr is true, but
like pgm2 otherwise.

(:when fexpr pgm . . . pgm)
Behave like (:if fexpr (:begin pgm. . . pgm) :nil)

(:unless fexpr pgm . . . pgm)
Behave like (:when (not fexpr) pgm. . . pgm).

(:until fexpr pgm . . . pgm)
Perform (:begin pgm. . . pgm) repeatedly until the value
of fexpr becomes true.

(:while fexpr pgm . . . pgm)
Behave like (:until (not fexpr) pgm. . . pgm).

(:star pgm . . . pgm)
Perform (:begin pgm. . . pgm) repeatedly for some
nondeterministically chosen number of times.

(:for-all var list pgm . . . pgm)
Perform (:begin pgm. . . pgm) repeatedly for all values of
the variable var taken from the list list.

(:for-some var list pgm . . . pgm)
Perform (:begin pgm. . . pgm) for some value of var from
the list, chosen nondeterministically.

(:conc pgm . . . pgm)
Concurrently perform all of the programs,
nondeterministically interleaving any single steps.

(:atomic pgm . . . pgm)
Perform (:begin pgm. . . pgm) but with no interleaving
from concurrent programs.

(:monitor pgm1 pgm2 . . . pgmn)

Perform pgm1 before every step of pgm2, which is
performed before every step of pgm3, and so on.

(:>> fexpr . . . fexpr)
Succeed after evaluating the expressions (for effect).

(:<< fexpr . . . fexpr)
Like :>> except that evaluation only happens on failure.

(:let ((var fexpr) . . . (var fexpr)) pgm . . . pgm)
Perform (:begin pgm. . . pgm) in an environment where
each variable var has the value of fexpr.

(:wait)

Succeed after the next exogenous action happens.

(:search pgm . . . pgm)
Perform (:begin pgm. . . pgm) online, but using lookahead
for any nondeterminism to guard against failure.

Note that obtaining the value of these expressions is not the same
as executing them. Execution is what is done by ergo-do alone.

Robotic Interface
A robotic interface is defined by a set of expressions of the form:

(define-interface ’out body)
The body should evaluate to a function of one argument
(like displayln) that will send an endogenous action to
an outside target, blocking until the target is ready.

(define-interface ’in body)
The body should evaluate to a function of no arguments
(like read) that will return the next exogenous action
received from an outside source, blocking when none.

The bodies can perform whatever initialization is needed for the
functions they return to work properly (such as opening files, or
making TCP connections). More than one in and out interface
can be defined. The functions write-endogenous and
read-exogenous can be used as default bodies.


