The bounds that tie
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Past and future

In machine learning we try to use the classification of examples we've seen (informally, the past) in order to
predict the classification of examples we haven’t seen (the future). A shrewd adversary can skew the past
so that any hypothesis based on it tends to do very badly in the future (how badly is the subject of the
Mistake Bound model). In order to limit the amount of mischief such an adversary is capable of, we can
insist that past and future be connected: examples of both sorts are from the same distribution, randomly
chosen according to a probability function that is fixed in advance.

Distributions form a strong, though elastic, connection between past and future. The error rate of a
given hypothesis, err(h), on the entire distribution is generally not identical to h’s observed error on an
initial sequence from the distribution, freq(h). However, the probability that freq(h) is much greater or
smaller than err(h) tails off as freq(h)/err(h) gets large or small. I derive some of the techniques we've used
to bound this probability, since I think some of the methods in their derivations can be recycled in other
situations, and a technique derived from (close to) scratch is easier to remember.

Lazy bounds

In general you'd like to say something predictive while making a few assumptions as possible about a
distribution. For any random non-negative variable X with expected value E(X) something can be said
about the probability that X exceeds some positive multiple of its expected value, kK F(X), even though the
connection between a point and average is pretty weak. Probabilities are in the interval [0, 1], so it’s easy to
make an informal underestimate of E(X) as follows:

E(X) > Pr[X > kEB(X)]-kE(X) + Pr[X < kE(X)]-0=Pr[X > kE(X)]- BE(X)k

Dividing by E(X)« gives Pr[X > kE(X)] < 1/k, the Markov Bound. This gives you no information if x <
1, and much less information than other bounds if k > 1. But it's an easy derivation to remember (hence
attractive when it does the job), and it’s tempting to take the same approach for bounding the bottom tail.
Suppose you knew that X takes values in [0, 1] (perhaps X is the distribution of some probability function),
then you might want to bound how far X gets from its expected value:

E(X)<Pr[X >&kE(X)]-1+Pr[X <kBE(X)]-cE(X) <Pr[X > xE(X)]+&E(X)

...s0 Pr[X > kE(X)] > (1—&)E(X), which is only helpful if &« < 1, and even then is truncated at E(X). You
can do a little better if X is capped by some multiple of E(X), say X < AE(X), denoting Pr[X > kE(X)]

as p:
1—k

E(X) <pAB(X)+ (1 -p)rB(X) = p> T—




Additive Chernoff bounds

In exchange for very little knowledge of the distribution of X, Markov bounds give you very weak bounds
on the tails of the distribution. In most cases you know a little bit more: membership in a target concept is
boolean (an example is either in or out), the labels are either + or —, and hypotheses are either consistent
with an example or not. This bit of structure means that, for a given hypothesis h, the examples that are
consistent and inconsistent with A form a distribution of their own, a sequence of independent Bernoulli
trials that either succeed (+) or fail (—). This distribution has tails that drop off sharply (exponentially),
and we can bound them much closer than we can with a Markov bound.

You can improve on Markov bounds by transforming the reciprocal bound, Pr[X > «] < E(X)/k, into a
reciprocal exponential bound, Pr[eX > e*] < E[eX]/e*. Since exp(z) is monotonic increasing, it preserves
inequalities (so the two probabilities are the same), and the new bound has an exponential, rather than
linear, denominator.! The inequalities are still preserved if you add an extra non-negative factor ¢ (for
tuning, I guess) to the exponent, yielding Pr[e!X > %] < E[etX]/et*. The extra parameter ¢ will allow you
to optimize the inequality. Now your bound is

tX
Pr[X > k] = Pr[et* > '] < B[] _ e (th—InE[e])

The bound is minimized exactly when ¢k — In E[e*X] is maximized. However, to evaluate this you need some
information about E[X], so to make things concrete set X,,, = Y7 + --- + Y}y, a sequence of Bernoulli trials
where Pr[Y; = 1] = p and Pr[Y; = 0] = (1 — p). The expectation E[X,,] is pm, and it’s reasonable to try
to bound Pr[X,, > zm] < e—(tam—In B[e”™]) vy can use the fact that, for independent random variables,

the expectation of the product is the product of the expectations:
In E[e!*™] = In E[etV1++tYm] = In E[e!"? - .- Y] = In E[e!"*]™ = m In E[e*¥"].

Expectation is a weighted sum, so E[e!¥:] = pet + 1 — p, and In E[e!*™] = mIn(pe’ + 1 — p). To make your
bound as small as possible, you'd like to maximize tz — In(pet + 1 — p), so you can take derivatives with
respect to ¢ (that’s why that spurious ¢ was stuck in there in the first place):

t 2 t
pe d ¢ pe’(1 —p)
SR o — = (tz —1 1-p) =8

pet +1 —p> (tz = In(pe’ +1 - 7)) (pet + 1 —p)?

dt?
The second derivative is positive for all p € (0, 1), so the critical point where ¢ = In([z(1 — p)]/[(1 — z)p])
is a maximum. Plug in this optimal value of ¢ so e—m(tz—In(pe'+1-P)) will be as small as possible, and you
have the following bound for Pr[X,, > zm]:

%(tm —In(pe +1—p)) = (a:

Pr[Xy, > om] < e ™@R(E/P)+(—2) n([1—2]/11-p))

This is the fundamental bound,? but exponent looks pretty daunting — although it is plausible that you'll
know something about the ratio z/p, it is not so clear that you'll have easy access to (1 — z) and (1 — p).
Thankfully, it turns out that this bound can be be approximated with a polynomial expression in the
exponent. To verify this, fix p and let H(z,p) = zln(z/p) + (1 — z) In([1 — z]/[1 — p]), and show that this
is always greater than the polynomial 2(z — p)? by taking derivatives:

d z(1 - p) d? 1

—~ (H —2z—p)) =ln|{ ) —4(z - —~_(H —2z—p)¥) = — —4.

& (e -2 p) =i (B2D) de-n) o (Hlen) 20— 2P) = s
The second derivative is always non-negative, and the critical point corresponding to the first derivative
is a minimum. The critical value occurs when z = p, and plugging this in gives H(z,p) — 2(z — p)? = 0,

S (mostly) follow the approach used in the notes on Chernoff and Hoeffding bounds at
www.math.rutgers.edu/courses/591/chern.ps. See also The probabilistic Method, Alon, Spencer, and Erdos , Wiley
1992.

2The exponent is —m times the relative entropy of z, (1 —z) and p, (1 —p), also known as Kullback-Liebler distance D(z||p).



verifying that H(z,p) is never less than 2(z — p)2. Assume that z > p and let € = z — p, and this gives you
the additive Chernoff, or Hoeffding, bound:

Pr[ X, > (p+e)m] < e~2me’,

Since X, is the sum of the “successes” (the number of X; that are 1), m — X,,, sums the “failures” (the
number of X; that are 0), and these occur with probability (1 —p). The expectation E[m — X,,,] is (1 —p)m,
so symmetry gets you another Chernoff bound for (almost) free, by substituting m — X,, for X,, and 1 —p
for p in the first Chernoff bound:

2

Pr[Xpm < (p—€)m] =Prlm — X, > (1= (p—€))m] = Pr[m — X, > (1 —p+€)m] < e 27€,

Multiplicative Chernoff bounds

Another (multiplicative) flavour of Chernoff bound can be found by deriving a slightly looser fundamental
bound. These bounds are useful for answering questions about the probability that X, exceeds or falls
short of its expected value by some factor.3 You can start with bounding the probability that X,, doesn’t
exceed some multiple (less than 1) of the expected value E[X,,] (= pm), in other words Pr[X,, < (1—¢€)pm)]
(for 0 < € < 1). Reciprocals of exponentials reverse inequalities, so (using the same idea as in the previous
section), you find

—tXm —t(1—8)pm Ele %]
Pr[Xm < (1 —6)pm] = Prle e 1< o t(i=8)pm *

Once again, you can use the fact that the expected value of a product of independent variables is the same
as product of their expected values, or in symbols E[e *Xm=] = Ele t¥1...e *¥»] = E[e t¥1]... Ele Y]
= E[e t™¥1]™. The expected value E[e *¥1] is the weighted sum pe~* + 1 — p, which can be re-written as
1 —p(1 — e~?), which allows you to use the inequality 1 — z < e 2, to simplify the result so far (note that
this inequality loosens the bound a bit):

E[e—tXm] epm(e_t—l)

— epm(e_t-i—t—tﬁ—l)
e—t(1-8)pm — o—t(1-8)pm '

Pr[Xm, < (1-48)pm] <

To make this bound as tight (small) as possible means minimizing f(t) = e™* + t — ¢t — 1. The first
derivative, df(t)/dt = —e~* + 1 — 6, and the second derivative, d*f(t)/dt?> = et is positive, so the critical
point, when ¢ = In(1/(1—4)) is a minimum. Substitute this back into our current estimate of the probability
to find: 5 om
Pr[X, < (1— §)pm] < eP™(-8+(-8)In(1/(1-6)-1) _ (m) .

The denominator of the bound is (again) daunting, since you wouldn’t expect to manipulate (1 — §)(*=%)
easily, but (again) there is an approximation using a polynomial in § in the exponent. Since § has absolute
value at most 1, you can expand the Taylor series around 1 for In(1 —§) = —§ — 62/2 — 63/3 — -+, and
now you can multiply this by (1 —§) to get (1 —§)In(1l — ) = =8 + §2/2 + (positive terms) > —6 + 62/2,
which gives a simpler bound (but again loses some precision), for 0 < § < 1:

e pm e pm ed pm 522
_ - @ — - - - - — p—Pm
Pr{Xm, < (1—6)pm] < <(1 _ 5)(15)) = ((6(15) 1n(15)> < ((ea+52/2) =¢€ :

Things are a little messier for the upper tail, Pr[X,, > (1 + §)pm], for 0 < § < 1. Proceed as above (using
t instead of —t), and you'll get an eerily familiar bound:

e’ pm
Pr[Xp > (1+6)pm] < <m> .

31 (mostly) follow the approach in John Canny’s CS174 lecture notes on “Chernoff Bounds” at
www.cs.berkeley.edu/~jfc/cs174/lecs/lec10. See also A guided tour of chernoff bounds, Torben Hagerup and Chris-
tine Riib, Information Processing Letters, 33:305-308, 1990.




Again the denominator looks daunting, and the Taylor series expansion this time isn’t quite so kind,* giving
you (L +6)In(1+6) =6 + §2/2 — 63/6 + 6*/12 — 65/20 + --- > 6 + 62/2 — 63/6 + (6*/12— 65/20) +
<+ 4+ (62" /((2n — 1)2n) — 62"+ /((2n)(2n + 1))) > & + 6%/3.and (substituting this back into the bound),
you get the multiplicative Chernoff bound for the upper tail, for 0 < § < 1:

5 pm
- (1+5)> < e Pmi/3,

Pr[Xm, > (14 6)pm] < (W

Comparing the bounds

You derived additive and multiplicative bounds using independent routes, and it’s reasonable to wonder
which bound is tighter (although in practice convenience often outweighs finding the absolutely tightest
bound). Since there are a couple of steps in deriving the multiplicative bounds where looser estimates are
made, it’s not too surprising that the additive bounds are tighter if p is large enough. However, if you recall
that the polynomial factor in the additive bound is 2(z — p)?, and if £ = (1 & §)p, the corresponding factor
in the multiplicative factor is (z — p)?/2p (if z < p) or (z — p)?/3p (if ¢ > p), then it is clear that the
multiplicative bounds become tighter when p = 1/4 (if z < p) and p = 1/6 (if z > p). Below are some
figures demonstrating the relative strengths of the bounds, to finish up this look at Chernoff bounds.

bound IIll,X,p D
multG(m,x,p) ——
ultL(m,x,p) ------ .
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Figure 1: Here is a comparison of the bounds when p = 0.5 and m = 10. The first bound derived is
“bound,” the additive Chernoff bound is “add,”, the multiplicative bound when z > p is “multG,” and the
multiplicative bound when z < p is “multL.”

4This approximation is my own (so far as I know), so you might want to double-check the details.
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Figure 2: Here's the situation when p = 0.2, so you'd expect "add” to a little worse than "multL.”



