CSC236, Summer 2004, Assignment b — sample solutions

1. Prove or disprove the following claims, assuming R, S, and T are regular expressions.

(a)

If L(R*) = Rev(L(R*)) then L(R) = Rev(L(R)).

Cramv: It is false that if L(R*) = Rev(L(R*)) then L(R) = Rev(L(R)).

ProoF: Let R = (10 + 1 + 0). Then L(1 4+ 0)* C L(R)*, and L(1 + 0)* (the language of all
binary strings) is equal to Rev(L(1 + 0)*) (the reverse of a binary string is a binary string).
But L(10 + 1+ 0) = {10,1,0} is not equal to Rev(L(10 + 1+ 0)) = {01, 1,0}, since the first
language contains 10, and the second does not. Thus the claim does not hold. QED.

If L(R) = Rev(L(R)) then L(R*) = Rev(L(R*)).

CramM: Suppose L(R) = Rev(L(R)). Then for all z € L(R*), z € Rev(L(R*)).

PROOF: Suppose z € L(R*) = L(R)*. Then (by the alternative characterization of L(R)*), either
z = ¢, or,forsomek > 0,z =z --- 2, Where zy,...,zx € L(R). In the first case, e = Rev(e),
so ¢ = € € Rev(L(R*)), as claimed. In the second case, z = Rev(Rev(zt)---Rev(z1)) (by
repeated application of Theorem 7.4, page 189 of the Course Notes), and Rev(zg),. .., Rev(z;)
€ L(R) by assumption , so z € Rev(L(R*)), as claimed. Since z was chosen arbitrarily, L(R*)
C Rev(L(R*)).

On the other hand, suppose z is an arbitrary element of Rev(L(R*)). Then either z = Rev(e)
=€ (so ¢ € L(R*)), or z = Rev(z; - - - 1), where z1, ...,z € L(R). But (by repeated appli-
cation of Theorem 7.4) Rev(z; ---z;) = Rev(zg) - - - Rev(z1), and (by assumption that L(R)
= Rev(L(R))) Rev(zx),...,Rev(z1) € L(R), so z € L(R*). Since z was chosen arbitrarily,
this implies that Rev(L(R*)) C L(R*).

Since L(R*) and Rev(L(R*)) include each other, they are equal. QED.

If (RS)*=(R*S*)then R=S.

CrAM: It is false that if (RS)* = (R*S*) then R = S.

PRrROOF: Let R =1 and S =e€. Then R # S, since L(R) = {1} contains 1, and L(S) = {e} does
not, but

[identity law] (RS)* = (le)* =1*
[identity law] = (1%¢)
€ =€ = (1*¢*) = (R*S*)

This counter-example proves that the claim is false. QED.
If R= RR and R # 0, then R = R*.
CrLaM: If R= RR and R £ 0, then R = R*.

ProoF: Since R # 0, {|z| : z € L(R)} is a non-empty subset of N, and so it has a least element.
In other words, there is some z' € L(R) such that Vz € L(R), |z'| < |z|. Since L(R) = L(RR)
we must have ' = z,2,, where z1,2, € L(R), and by the choice of 2/, |z4|, |z2| > |2'|- But
this means that

|2'| = |@1] + |z2| > || + || = 0 > |2'|.



Since |z'| is a natural number, it must be 0, and z' = ¢, so € € L(R).
Now, let L = L(R), and consider:

Basis: € € L (just shown).
INDUCTIVE STEP: If z € L and y € L(R), then (since L = L(R) = L(RR)), zy € L.

These two facts verify that L has an identical definition by structural induction to L(R*), so
(since L(R) = L) L(R) = L = L(R*), in other words, R = R*, as wanted. QED.

2. Give a regular expressions that denotes L, and justify your answer.

(a) L ={z € {0,1}* : z contains at least four Os}.
SoLuTiON: L = L(1*01*01*01*0(0 + 1)*). Indicate the first four Os. The first one is preceded by
a prefix in 1* (zero free), the first and second are separated by a substring in 1*, the second and
third are separated by a substring in 1*, and third and fourth are separated by a substring in 1%,
and the fourth zero is followed by any arbitrary binary string.

(b) L = {z € {0,1}* : z contains at least two Os and at most one 1}
SoLuTioN: L = L(000* 4+ 1000* + 000*1 4 0*0100*). A string in L may have zero 1s and at least
two Os, or it may have a single 1 followed by two or more 0Os, or it may have a single 1 preceded
by two or more Os, or it may have a single 1 with at least one 0 before and at least one 0 after it.
The union of these possibilities is L(000* 4+ 1000* + 000*1 + 0*0100*).

(¢) L ={z € {0,1}* : z contains an odd number of 0s, or exactly two 1s}
SoLuTION: L = L(1*01*(01*01*)*40*10*10*). The term 1*01*(01*01*)* denotes the set of strings
whose prefix 1*01* contains a single 0, followed by zero or more 1s, followed by 0 or more strings
that contain two Os each, so L(1*01*(01*01*)*) is the language of strings that contain an odd
number of 0s. The term 0*10*10* denotes any string that contains two ones surrounded (and
separated) by zero or more Os, so L(0*10*10*) is the language of strings that contain exactly two
1s. Thus L(1*01*(01*01*)* 4+ 0*10*10*) denotes the union of the set of strings with an odd number
of zeros with the set of strings with exactly two 1s, as wanted.

(d) L ={z € {0,1}* : = doesn’t contain the substring 101}
SoLuTION: L = L(0*(1+ 1000*)*10* +0*). Any string that doesn’t contain 101, but does contain
at least one 1 can be expressed as the concatenation:

o a prefix preceding the first 1 denoted by 0*

e zero or more blocks starting with 1 and followed by either no Os, or at least two Os. These
are denoted by (1 + 1000*)*.

e the final 1
e a suffix following the last 1, denoted by 0*
The only other possibility for a string that doesn’t contains any 1s. The expression 0*(141000*)*+
0* denotes the union of these two possibilities.
(e) L ={z € {0,1}*: z is neither 11 nor 111}
SoLuTION: L = L(1+ (1*01*)* + 11111*). Consider the following cases’
e Any binary string that is not comprised of one or more 1s is a member of L((1*01*)*), since

it can be decomposed into the prefix before the first 0, the substring starting with the th 0
until just before the (¢ + 1)th 0, and so on.
e The binary string comprised of one or more 1s that aren’t either 11 or 111 are either in L(1)

or L(11111*), since they have either one character or more than three characters.

The solution is the union of these cases, so L C L(1+ (1*01*)* +11111*). On the other hand, it is
clear by inspection that neither 11 nor 111 match the regular expression, so the reverse inclusion
is also true.

!Thanks to Carrie Chan for this solution. It is shorter (and nicer) than mine.



3. For each of the following languages, L, construct a DFSA that accepts L and a regular expression that
denotes L. Prove your automata and regular expressions are correct.
(a) L ={z € {0,1}*: |z| > 2 or z contains suffix 1}
Cram 3(a)l: L =L((0+1)*1+(0+1)(0+ 1)(0+ 1)(0+ 1)*).
PROOF: Let z be an arbitrary string in L. There are two cases to consider
CASE 1, |z] > 2: If |z| > 2, then z can be expressed as the concatenation uv, where |u| =3
and v is any binary string. Thus v € L((0+1)(0+1)(0+1)),and v € (0+1)*, so z = uv
€ L((0+1)(0+1)(0+1)(0+ 1)*).
CASE 2, £ CONTAINS SUFFIX 1: If z contains suffix 1, then z can be expressed as the con-
catenation uv, where v is any binary string and v = 1, so z € L((0 + 1)*1).
These two cases exhaust the possibilities, so z is in their union, that is z € L((0 + 1)*1 +
(0 4+ 1)(0+ 1)(0+ 1)(0 4+ 1)*). Since z is an arbitrary element of L, this shows that L C
L((0+1)*14+ (0+1)(0+1)(0+ 1)(0 + 1)*).
On the other hand, let z be an arbitrary string in L((0+1)*1+ (04 1)(0+1)(0+ 1)(0+1)*).
There are two cases to consider:
CaAse 1, z € L((0+ 1)*1): If z € L((0+ 1)*1), then z can be expressed as the concatenation
uv, where u € L((0 + 1)*) is an arbitrary binary string, and v € L(1). In this case z has
the suffix 1, so z € L.
CAsE 2, z € L((04+1)(04+ 1)(0 4+ 1)(0 + 1)*): In this case, z can be expressed as the con-
catenation uv, where v € L((0+ 1)*) is an arbitrary binary string, and u contains exactly
three characters. In this case |z| > 2, so z € L.
The two cases exhaust the possibilities, so z € L. Since z was chosen as an arbitrary element
in L((0+ 1)*1 4+ (0+ 1)(0 + 1)(0 + 1)(0 + 1)*), This means that L((0 + 1)*1 + (0 + 1)(0 +
1)(0+1)(0+1)*) C L.
This shows that the two languages contain each other, and thus are equal. QED.
CramM 3(a)2: The following DFSA, M accepts L:

o
(O

0,1

Before proving Claim 3(a)2, I need to prove the following state invariant:
Cram 3(A)21: Define P(z) by

a, ifez=c¢
b, ifz=0
P(z): 6*(s,z)=<c¢c ifz € {00,10}
d, ifz=1
le, ifz€{11,01} or |z[ > 2

PROOF (INDUCTION ON |z|): Suppose |z| = 0, that is, z = €. Then §*(s,z) = s = a, and P(e)
claims that z = €, which is certainly true. Thus the base case (P(e)) holds.
INDUCTION STEP: For some arbitrary non-empty string z, assume that P(y) holds for every
y such that |y| = |z| — 1. There are two possibilities to consider:



CASE z = y0 FOR SOME y € {0,1}*: Since you've assumed P(y), you can substitute it into
the state invariant:

(6(a,0), fy=e

0(b,0), ify=0

0*(s,90) = ¢ 6(c,0), if y € {00, 10}

§(d,0), ify=1

[6(e,0), ifye€{11,01}or [y| >2

Now evaluate the transition function, and take into account that you have appended a 0:

b, ifz=0
¢, ifz=00
§*(s,z) = e, if z € {000,100}
¢, ify=10
le, if z € {110,010} or |z >3

The two claims for state ¢ combine to “if z € {00, 10} then §*(s,z) = ¢.” The two claims
for state e, together with the fact that in Case 1 z ends in 0, combine to “if |z| > 2 then
6*(s,z) = e.” The claim for b is identical to that in P(z), and the claims for a and d hold
vacuously (false antecedents). Thus P(z) holds in the case where z = y0.

CASE z = yl FOR SOME y € {0,1}*: You've already assumed P(y), so substitute it into the
state invariant: )
0(a,1), ify=ce
0(b,1), ify=0
0*(s,y1) = ¢ 6(c, 1), if y € {00, 10}
6(d,1), ify=1
[0(e, 1), ify€{11,01}or [y| >2

Now evaluate the transition function and take into account that you have appended a 1:

2

d, fz=1
e, ifz=01
6*(s,y1) = e, ifz € {001,101}
e, ffz=11
(e, ifz € {111,011} or |z| >3

The claim about state d is identical to that in P(z), and the claims about a,b, ¢ hold
vacuously (false antecedents). The claims about e, together with the fact that z ends in
1 in Case 2, combine to “if z € {01,11} or |z| > 2, then §*(s,z) = e. Thus P(z) holds in
the case where z = y1.
In either case P(y) implies P(z), as wanted.
I conclude that P(z) is true for all z € {0,1}*. QED.
To prove Claim 3(a)2, first assume that z is an arbitrary string in L. If z has prefix 1, then
by P(z) either §*(s,z) = d, or 6*(s,z) = e, both accepting states. If |z| > 2, then by P(z)
0*(s,z) = e, and z is accepted. So z € L(M), and (since z was chosen to be an arbitrary
string in L) this means that L C L(M).
On the other hand, assume that  is an arbitrary string in L(M), but not a string in L. Thus
z does not end in 1, and has 2 or fewer digits, that is z € {¢,0,00,10}. However, by P(z)



then 6*(s,z) € {a,b,c}, contradicting the assumption that z is accepted by M. Thus the
assumption that z ¢ L is false, and z € L. Since z was chosen arbitrarily, L(M) C L.
Since L and L(M) include each other, they are equal. QED.
(b) L = {z € {0,1}* : = contains substring 11 and z has an even number of 0s}
Cram 3(B)1: L = L(1*(01*01%)*111%(01*01*)* + 1*01*(01*01*)*111*01* (01*01%)*).
PROOF: Let = be an arbitrary element of L. Fix an instance of the substring 11 and there are
two possibilities
CASE 1: There are an even number of Os preceding the instance of 11, and hence an even
number of Os following it. Thus z can be expressed as the concatenation uvw, where u, w
€ L(1*(01*01*)* (proved in Course Notes), and v € L(11), so z = uvw is a member of
L(1*(01*01*)*111*(01*01%)*.
CASE 2: There are an odd number of 0s preceding the instance of 11, and hence an odd
number of 0s following it. Thus z can be expressed as the concatenation u;usvw;ws,
where u; is the prefix of z up to and including the first 0, uy is the substring of z
following the first 0 and preceding the instance of 11 (and hence containing an even
number of 0s), v is 11, w; is the substring of z following the instance of 11 and including
the next 0, and w, is the suffix of z following that 0 (and hence containing an even
number of 0s. Hence u,,ws € L(1*(01*01*)*, u; and w; consist of zero or more 1s
with a 0 suffix, and are in L(1*0), and v = 11. This means that z = ujusvwiwy €
L(1*01*(01*01%)*111*01*(01*01*)*).
The two cases exhaust the possibilities, so z € of the union L(1*(01*01*)*111*(01*01*)* +
1*01*(01*01*)*111*01*(01*01*)*). Since z was chosen as an arbitrary element of L, this shows
that I C L(1*(01*01*)*111*(01*01%)* + 1*01*(01*01*)*111*01*(01*01%)*).
On the other hand, suppose z is an arbitrary element of L(1*(01*01*)*111*(01*01*)* +
1*01*(01*01*)*111*01*(01*01*)*). Then there are two possibilities:
CASE 1: z is in L(1*(01*01*)*111*(01*01*)*, so we can express ¢ as uvw, where u,w €
L(1*(01*01*)*) have an even number of Os (proof in Course Notes), v = 11, so uvw has
an even number of zeros and contains 11.
CASE 2: zisin L(1*01*(01*01*)*111*01*(01*01*)*), so we can express as uj Uz VWi Wz, Where
Ug, wo € L(1*(01*01*)*) have an even number of Os, u;, w; have exactly one 0 each, and
v = 11, so uvw has an even number of zeros and contains 11.
The two cases exhaust the possibilities, and in both cases z € L. Since z was chosen to be
an arbitrary element of L(1*(01*01*)*111*(01*01*)* 4+ 1*01*(01*01*)*111*01*(01*01*)*), this
shows that L(1*(01*01*)*111*(01*01%)* + 1*01*(01*01*)*111*01%(01*01*)*) C L.
The two languages have been shown to contain each other, and are hence equal. QED.
CramM 3(B)2: The following DFSA, M, accepts L:

S

Before proving claim 3(b)2, I need to prove the following invariant:



CramM 3(B)21: Define P(z) as

P(z): 6%(s,z) =

a’
b, if  doesn’t contain 11, has an even number of 0s, and ends in 1

¢, if z contains 11 and has an even number of Os

e, 1if zdoesn’t contain 11, has an odd number of Os, and ends in 1

| f, if z contains 11 and has an odd number of Os

Then P(z) is true for all z € {0, 1}*.

PROOF (INDUCTION ON |z|): If |z| = 0, that is z = ¢, then §*(s,z) = a, and P(€) claims that €
doesn’t contain 11 nor end in 1, which is certainly true. So P(e) holds (basis).
INDUCTION STEP: Assume that P(y) holds for all y such that |y| = |z| — 1, for some arbitrary
z. There are two possibilities

CASE z = y0, FOR SOME y € {0, 1}*: We have assumed P(y), so we can substitute y into our

invariant:

6%(s,y0) =

‘
(=2

a,

O O
o

(=7}

d,

(=%

e

(=%

£,

0), if y doesn’t contain 11, has an even number of Os, and doesn’t end in 1
,0), if y doesn’t contain 11, has an even number of 0s, and ends in 1
¢,0), if y contains 11 and has an even number of 0s
0), if y doesn’t contain 11, has an odd numb er of Os, and doesn’t end in 1
,0), if y doesn’t contain 11, has an odd number of 0Os, and ends in 1
0), if y contains 11 and has an odd number of Os

Now I evaluate the transition function, and toggle the parity of the number of Os:

§*(s,z) =

if z doesn’t contain 11, has an odd number of Os, and doesn’t end in 10
if z doesn’t contain 11, has an odd number of 0s, and ends in 10

if z contains 11 and has an odd number of Os, ends in 0

if z doesn’t contain 11, has an even number of Os, and doesn’t end in 10
if z doesn’t contain 11, has an even number of 0s, and ends in 10

if z contains 11 and has an even number of Os, ends in 0

Combining the two implications about state d with the fact that (for Case 1) z doesn’t
end in 1, yields “if z doesn’t contain 11, has an odd number of Os, and doesn’t end in 1,
then 6*(s,z) = d.” Similarly, combining the two implications about state a yields “if z
doesn’t contain 11, has an even number of Os, and doesn’t end in 1, then 6*(s,z) = a.”
The implications about b and e are vacuously true (there are no 0O-transitions into these
states), and the implications about states c and f are what P(z) claims. So P(z) is true
in this case.

CASE z = yl, FOR SOME y € {0,1}*: I have assumed P(y), so I can substitute it into the

invariant

6"(s,yl) =

, if y doesn’t contain 11, has an even number of Os, and ends in 1

, if ydoesn’t contain 11, has an odd number of 0s, and ends in 1

)
)
), if y contains 11 and has an even number of 0s
)
)
), if y contains 11 and has an odd number of 0s

if z doesn’t contain 11, has an even number of 0s, and doesn’t end in 1

, if z doesn’t contain 11, has an odd numb er of Os, and doesn’t end in 1

, if y doesn’t contain 11, has an even number of Os, and doesn’t end in 1

, if y doesn’t contain 11, has an odd numb er of Os, and doesn’t end in 1



Now I evaluate the transition function, noting that the number of Os is unchanged, and
z ends in an extra 1:

;

b, if z doesn’t contain 11, has an even number of Os, and ends in 1
¢, if z has an even number of 0s, and ends in 11

5(s,z) = ¢, if z contains 11 and has an even number of Os, ends in 1

e, if z doesn’t contain 11, has an odd number of Os, ends in 1
f, if fhas an odd number of Os, and ends in 11

f, if ¢ contains 11 and has an odd number of 0s, and ends in 1

The two implications about state c, together with the fact that in Case 2 z ends with a
1, combine to “if z contains 11 and an even number of zeros, then 6*(s,z) = ¢.” The
two implications about state f, combine to “if  contains 11 and an odd number of zeros,
then 6*(s,z) = f.” The claims about states b and e are verified, and the claims about a
and d are vacuously true (there are no 1-transitions into those states). So P(z) is true in
this case as well.

In each case, P(y) implies P(z), as wanted.

I conclude that P(z) is true for all z € {0,1}*. QED.

To prove Claim 3(b)2, let z be an arbitrary string in L. Then, by P(z), 6*(s,z) = ¢, an

accepting state, and my machine accepts z, so z € L(M). Since ¢ was chosen arbitrarily, L

C L(M).

On the other hand, suppose z € L(M). Then (again by P(z)), if z were not in L, §*(s,z) €

{a,b,d, e, f}, contradicting the assumption that z € L(M). Thus z € L, and (since z was

chosen arbitrarily) L(M) C L. By mutual inclusion, L = L(M), as claimed.

(c) Let (z)2 denote the value of z as a binary number.
L={z€{0,1}*: for somen € N,(z); =n and for some ,; € N, (ndiv 2*) mod 2’ = 5}

SOLUTION: Most of the work here is translating what L means. Using Proposition 1.7 (Division
Algorithm), ndiv 2? is defined as g; where

n = q2°4+r (0<r<2Y)
and ¢ = @2°+5 (0 <5< 27)
so n = (@2 +5)2+r=g2"7 +5x2 4.

This means that, in binary, n is the sum of a binary number ending with ¢ + j Os, where 7 > 3

(since 5 < 27), plus 101 followed by 7 Os, plus the binary representation of 7, which has 7 or fewer

digits (since r < 2¢). These are exactly the binary numbers that contain the substring 101 (binary

5).

Cram 3(c)l: L = L((0 + 1)*101(0 + 1)*).

PROOF: Suppose z is an arbitrary string in L. Then (by the preceding discussion) z is a binary
string that contains 101, and can be expressed as the concatenation uvw, where u,w €
L(0+ 1)* are arbitrary binary strings, and v = 101. Thus z = uvw € L((0+ 1)*101(0 + 1)*).
Since z was chosen arbitrarily, L C L((0 + 1)*101(0 + 1)*).

On the other hand, suppose z is an arbitrary string in L((0 + 1)*101(0+ 1)*). Then z is the

concatenation uvw, where u,w € L(0+1)* and v = 101. In this case z contains the substring

101 (namely v), so z € L. Since z was chosen arbitrarily, L((0 + 1)*101(0 + 1)*) C L.

We have shown that the two languages contain each other, hence they are equal. QED.
Cram 3(c)2: The following machine accepts L:



In order to prove this claim, I need to prove the following invariant:

CramM 3(c)21: Let P(z) be defined

a,

b

P(z):0%(s,z) =

d,

Then P(z) is true for all z € 0,

if z doesn’t contain 101, and doesn’t end in 1 or 10
if £ doesn’t contain 101 and ends in 1
if z doesn’t contain 101 and ends in 10

if z contains substring 101

1*.

PROOF (INDUCTION ON |z|): Suppose |z| = 0, in other words, z = e. Then 6*(s,z) = a, and
z doesn’t contain 101 nor end in either 1 or 10. All the other branches of P(z) have false
antecedents, and thus hold vacuously, so P(e) holds (base case).

INDUCTION STEP: Suppose |z|
There are two possibilities:

> 0, and assume P(y) for all strings y with |y| = |z| — 1.

CASE z = y0, FOR SOME y € {0, 1}*: By assumption, we have P(y), so we can substitute y

into our invariant:

5*(s,0) =

if y doesn’t contain 101, and doesn’t end in 1 or 10
if y doesn’t contain 101 and ends in 1
if y doesn’t contain 101 and ends in 10

if y contains substring 101

Now we evaluate the transition function to get:

a, if z doesn’t contain 101, and doesn’t end in 10 or 100

3]

& (s,2) =1

if z doesn’t contain 101 and ends in 10

a, if z doesn’t contain 101 and ends in 100

d, if z contains substring 101 and ends in 0

The two implications about

state a, together with the fact that (in Case 1) z doesn’t end

in 1, combine into “if z doesn’t contain 101 and doesn’t end in 1 or 10, then §*(s,z) =

a“"

construction, z doesn’t end

This verifies all of P(z) except for strings that move the machine to state b. By

in 1, the implication “if £ doesn’t contain 101 and ends in 1,

then 6*(s,z) = b” is vacuously true in this case. So P(z) holds for the case where z = y0.

CASE z = yl1 FOR SOME y € {0,1}*: Again we assume P(y) and substitute it into our invari-

ant:

6*(s,y1) =

if y doesn’t contain 101, and doesn’t end in 1 or 10
if y doesn’t contain 101 and ends in 1
if y doesn’t contain 101 and ends in 10

if y contains substring 101



Evaluate the transition function to get

if z doesn’t contain 101, and ends in 1 but not 11

b,
5(s,2) b, if z doesn’t contain 101 and ends in 11
S, z = . .
d, if z endsin 101, first occurrence of 101
d,

if z contains substring 101 followed later by by suffix 1

The two implications for state b combine into “if z doesn’t contain 101 and ends in 1,
then 6*(s,z) = b” and the two cases for state d combine into “if  contains 101 and ends
in 1, then 6*(s,z) = d”. The implications about the other two states are vacuously true,
since there are no 1-transitions into a and c¢. Thus P(z) is verified for the case where
z=yl.

In both cases, P(y) = P(z).
I conclude that P(z) is true for all z € {0, 1}*.

To prove Claim 3(c)2, let z be an arbitrary string in L. By P(z), 6*(s,z) = d, an accepting state.
On the other hand, suppose z is accepted by our machine. Then z must contain the substring
101, since otherwise, by P(z), 6*(s, z) would be in one of the non-accepting states a, b, or c. Thus
our machine accepts exactly the strings of L. QED.

4. Let

Ly
L,

{z € {0,1}* : for some k € N, z has 3k + 2 zeros}
L(11(0 4+ 1)*).

(a) Construct DFSAs M; and M, so that Ly = L(M;) and Ly = L(M>).

0,1
0 0
1 s

1 0 1 1
The machine on the left is M;, and the one on the right is Ms.

b) Use the Cartesian product construction (page 228) to create a DFSA M’ that accepts Ly N L.
g

First I list the transition function, ¢’ in table form. In indicate missing (dead) transitions with a

dash.

State (q1,492) | 6'((91,42),0) | 0'((91,92), 1)

(a,d) — (a,e)
(a,e) — (a, f)
(a, f) (b, 1) (a, f)
(b,d) — (b,e)
(b,e) — (b f)
(b f) (e f) (b, f)
(c,d) — (c,€)
(C, e) - (C, f)
(e, f) (a, f) (e, f)




By inspection, states (b,d) and (c,d) are never the targets of transition function ¢, and states
(b,e) and (c, e) are only ever reached from (c,d) and (¢, d), so we can omit these states from our
diagram

<

(c) Give a state invariant for M’, and prove it correct.

50“0*6

Here is a state invariant for M’ (any string not specified in the invariant implicitly takes M’ to a
dead state):

(a,d), ffz=¢

(a,e), ifz=1

5 (s, ) (a, f), 1if z has prefix 11 and 3k + 0 Os ‘
(b, f) if z has prefix 11 and 3k + 1 Os
(¢, f) if z has prefix 11 and 3k + 2 Os

dead, otherwise

Cram: P(z) “The state invariant above is true for ” holds for all z € {0, 1}*.

PROOF (INDUCTION ON |z|): If || = 0, then z = ¢, and (by definition of the starting state)
8"*(s,z) = s = (a,d). All the other implications in the invariant are true by virtue of having
false antecedents. This verifies the basis P(e).

INDUCTION STEP: Assume that P(y) holds for each y € {0,1}* where |z| > |y| > 0. I need

to show that this implies P(z). There are two cases to consider

CaAsE z = y0 AND P(y) Is ASSUMED: Since |z| > 0, it is impossible that ¢ = ¢, and since z
has a suffix 0, it impossible that z = 1. Also, §(dead, 0) = dead, so by P(y):

4

(a,d), if y0 = € (false antecedent)
(a,e€), if y0 = 1 (false antecedent)
d((a, f),0), if y has prefix 11 and 3k + 0 Os
5((b, f),0), if y has prefix 11 and 3k + 1 Os
d((c, f),0), 1if y has prefix 11 and 3k + 2 Os
| 0(dead,0), otherwise

8™ (s,y0) =
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Use the transition function, d, and the fact that z has one more 0 than y does:

((a,d), if y0 = € (false antecedent)
(a,e), if y0 =1 (false antecedent)

(b, f), 1if z has prefix 11 and 3k + 1 Os
(¢, f), if z has prefix 11 and 3k +2 Os
(a, f), 1if z has prefix 11 and 3k + 0 Os

dead, otherwise

8" (s,90) =

Thus the invariant is preserved in this case.
CASE z = yl AND P(y) IS ASSUMED: Since |z| > 0, z # ¢, and §(dead, 1) = dead, so, by
P(y):
(6((a,d),
é((a,e),

1), ify=¢
1)

d((a, f),1), if y has prefix 11 and 3k + 0 Os
1)
1)

, ify=1
8™ (s,yl) =
(s:91) 0((b, f),1), 1if y has prefix 11 and 3k+ 1 Os
d((e, f),1), 1if y has prefix 11 and 3k + 2 Os
6(dead, 1), otherwise

Evaluating the transition function, and noting that a 1 has been appended:

(a,d), 1if z = € (false antecedent)
(a,e), ifz=1
(a,f), ifz=11
§,T) = a 1f T has prefix an + [
6'*( ) (a,f), if z has prefix 11 and 3k+ 00
if  has prefix 11 and 3k + 1 Os
(b, f), if z has pref d 3k
c if  has prefix 11 and 3k + 2 Os
(c,f), ifz has pref d 3k

dead, otherwise

Thus the invariant is preserved in this case.

In both cases P(y) implies P(z).
I assume that P(z) is true for all z € {0,1}*. QED.

(d) Use the previous part to prove that L(M') = Ly N L,.

Cram: L(M') = Ly N L.

ProOF: Let z € Ly N Ly. Then z has 3k + 2 zeros and begins with the prefix 11. According
to P(z) (proved above), 6'*(s,z) = (c, f), the unique accepting state of M’, so z € L(M").
Since z was chosen as an arbitrary member of L; N Lj, you have Ly N Ly C L(M').

Now suppose z € L(M'). According to P(z), if z doesn't have prefix 11 or 3k + 2 zeroes,
then 6"*(s, z) is some state other than (c, f), which contradicts z € L(M'). Thus z does have
prefix 11 and 3k + 2 zeroes, so ¢ € Ly N Ly. Since £ was chosen as an arbitrary member of
L(M'"), you have L(M') C Ly N L,.

By mutual inclusion, L(M') = L; N Lo, as wanted. QED.

5. Is L regular? Justify your claim.

(a) L is the language of first-order formulas with variables {z1, z2,. ..}, predicate symbol S of arity
3, and constant symbol c.

SOLUTION: L is not regular. One way to see this is to note that regular languages are defined over
a finite alphabet, and hence cannot denote all of the formulas that use an infinite set of symbols.
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(b)

(d)

Another way to see this is to use the pumping lemma, and consider a formula (((- - - (S(z1, z2, Z3)A
S(z1,z2,23))A---) (a formula beginning with p left parentheses, where p is the pumping length).
In this case uv*w will destroy the parity of left and right parentheses for any k # 1.

L ={z € {0,1}* : |z| is prime}

SOLUTION: L is not regular. If L were regular, then by the pumping lemma there would be a
pumping length p such that every z € L with |z| > p would be expressible as z = uvw with
|luv| < p, |v| > 0, and uv*w € L for every k € N. Let d be some prime greater than p + 1, and
let z =19 (d 1s). Thus z € L, and |z| > p + 1, so z = uvw, as specified. Since |uvw|=d>p+1
and |v| < p, you know that |[uw| > 1, so

Juv™lw| = |uw| + [uw| x [v] = [uw| x (1+ |v]),

So |uv!*¥ly| is not prime (it has two divisors greater than 1), and uv/**lw ¢ L, contradicting the
assumption that L is regular and the pumping lemma applies.

L = {z € {0,1}* : z contains exactly one 1 and z contains an even number of 0Os }.

SOLUTION: L is regular, since L = Ly N Ly, where L; = L(0*10*) (the language with exactly one
1), and Ly = L(1*(01*01*)* (the language with an even number of 0s. Both L; and L, are regular
languages, and the regular languages are closed under intersection, so L = L; N L is also regular.
L={zeL(0"10"):neNZX ={0,1}}

SOLUTION: L is not regular. Suppose L were regular, then it would have an associated pumping
length p, and whenever z € L has |z| > p, then z = uvw with |uv| << p, |v| > 0, and wv*w € L
for all k € N. Let £ = 0P10P. Then v = 07, for some 1 < j < p, so uv®w = 0P 710P, which is not
in L, since it has fewer Os before the 1 than after it. This contradicts the assumption that L is
regular.

L = {z € {0,1}* : z contains an equal number of strings 01 and 10}

SOLUTION: L is regular. Here is a DFSA that accepts L:

S

o
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