CSC236 Summer 2004
Assignment 1 sample solution

8th June 2004

1. Lattice logistics.

(a)

(b)

Claim 1(a)i: Suppose n > k > 0 are natural numbers. Then there are n — k + 1 segments of length k& with their
end points on the lattice points of a length-n lattice.

Proof: Place the length-n lattice on a coordinate system so that the coordinates of lattice points are natural
numbers h, with 0 < h < n. A segment of length k is uniquely determined by its coordinate, h’, that is
nearest the origin, and if this segment begins and ends on lattice points, you must have 0 < A’ < n—k. There
are n — k + 1 integers in the range (0,n — k), so there are n — k + 1 segments of length k that begin and end
on the lattice points of a length-n lattice. QED.

Claim 1(a)ii: There are )"~ , ¢ segments of positive length with end points on the lattice points of a length-n lattice.

Proof: A segment of positive length with end points on a length-n lattice has length k, where 1 < k < n, so by
Claim 1(a)i there are n — k + 1 such segments for each 1 < k < n, or

Yn—k-1)= > (m-k+1)=> i

k=1 n—k+1=1 =1

(wheret =n —k+ 1),

segments in all. QED.
Claim 1(a)iii: The sum " ;¢ = n(n+1)/2. (So, by Claim 1(a)ii, there are n(n + 1)/2 segments of positive length
with end points on a length-n lattice).

Proof: In the course notes (pages 22 and 23) there is a proof that ) .., ¢ = n(n + 1)/2. Since the term ¢ = 0
doesn’t change the sum, this is the same as the sum )., . QED.

Claim 1(b)i: Suppose n > k > 0 are natural numbers. Then there are (n — k + 1)? squares of area k2 with their
corners on lattice points of an n x n two-dimensional lattice.

Proof: Place the n x n lattice on a coordinate system so that the lattice points have coordinates (h,?), where
0 < h,i < n. BEach square of area k? with its corners on lattice points is uniquely determined by the
coordinates (h',1’') nearest the origin. A square with sides of length k fits on an n x n lattice if and only if
these coordinates satisfy 0 < h' < n—k and 0 < 7' < n—k. There are n — k+ 1 integers in the range (0,n — k),
so there are (n — k + 1)? such squares in all. QED.

Claim 1(b)ii: There are )"~ , i squares of positive area with their corners on the lattice points of an n x n lattice.

Proof: A square of positive area with its corners on the lattice points of an n x n lattice has sides of length %,
where 1 < k < n. By Claim 1(b)i there are n — k + 1 such squares for each 1 < k < n, so there are

n n n

Z(n—k—l—l)zz Z (n—k+1)2=Zi2 (where i =n — k + 1),

=1 n—k+1=1 =1

squares in all. QED.



Claim 1(b)iii: P(n): “The sum Y ;- ;1% = n(n + 1)(2n + 1)/6” for all n € N. (By Claim 1(b)ii, this means there
are n(n + 1)(2n + 1)/2 squares with their corners on the lattice points of an n x n lattice, since the term ¢ = 0
doesn’t change the sum).

Proof (induction on n): P(0) states that 0 equals 0, which is certainly true, so the base case holds.
Induction step: I want to show that P(n) = P(n + 1), so I assume P(n) for an arbitrary n € N. Now the sum
Z?:o 12 can be broken into two terms, and I can use the inductive hypothesis on the first term

% 2 = (Zz ) (n+1)32 n{n + 1)6(2n +1) +(n+1)?* (by inductive hypothesis)
2
— (n+1) (n(2n+1)6+6(n+1)> :(n+1)(2n +67n+6>
_ (n+1)(n+2)(2n +3) _ (m+1)(n+1]+1)2n+1]+1)
6 6 '

which is what P(n + 1) claims. So P(n) = P(n + 1).
I conclude that P(n) is true for any n € N. QED.

2. More lattices.
(a) Claim 2(a)i: Suppose n > k > 0 are natural numbers. Then there are (n — k + 1)3 cubes of size k* with corners on

the lattice points of an n x n x 1 three-dimensional lattice.

Proof: Place an n xn xn lattice in a coordinate system so that the coordinates of lattice points are natural numbers
(h,4,7), with 0 < h,%,7 < n. A cube of size k® is uniquely determined by the coordinates of its corner (h’, ', 5')
nearest the origin. Since the cube must fit inside the larger lattice, (h’,',j') are the coordinates nearest the
origin of a cube of size k2 if and only if

0<K<n—-k 0<i<n—-k 0<j<n—k

There are n — k + 1 natural numbers in the range (0,n — k), so there are (n — k + 1) possibilities for the
coordinates of the corner nearest the origin of a cube of size k% with its corners on the lattice points of an
n X n x n lattice. So there are (n — k + 1)3 such cubes. QED.

Claim 2(a)ii: An n x n x n lattice contains .., z* cubes of positive volume with corners on lattice points.

Proof: A cube of positive volume with corner points on the lattice points of an n x n x n lattice has sides of length
k, where 1 < k < n. By Claim 2(a)i, there are (n — k + 1)3 such cubes for each k in this range, so there are

n
Z(n—k—l—lf— Z (n—k+1) Zi3 (where i =n — k + 1),
k=1 =1

n—k4+1=1
cubes in all. QED.

Claim 2(a)iii: P(n): “The sum ;- 23 = [n(n + 1)/2]>” for all n € N. (By Claim 2(a)ii this means that there are
[n(n+1)/2]? cubes with their corners on lattice points on an n X n x n lattice, since the term ¢ = 0 doesn’t change
the sum).

Proof (induction on n): P(0) states that 0 equals 0, which is certainly true, so the base case holds.
Induction step: I want to show that P(n) = P(n + 1), so I assume P(n) for some arbitrary n € N. Now I can
break up the sum Z?:Ol 13 into two parts, and use the inductive hypothesis on the first part

gz@ = (Zz) (n+1)3 (w>2+(n+1)3
(n+1)? (n +4(n+1)> (11 <n2+4n+4> _ ((n+1)(n+2)>2’

4 4 2



where the right-hand sum is what P(n + 1) claims, so P(n) = P(n + 1).
I conclude that P(n) is true for all n € N. QED.

(b) Claim 2(b)i: There are [n(n + 1)/2]? rectangle with positive volume with corners on lattice points of an n x n
lattice.

Proof: A rectangle with corners on lattice points of an n X n lattice is uniquely determined by the its projection
onto the bottom and left side of the lattice. These projections are segments of positive length on two length-n
lattices, so (by Claim 1(a)iii) there are n(n + 1)/2 choices for the projection onto the bottom, and n(n +1)/2
choices for the projection onto the left side, for [n(n + 1)/2]? combinations of these projections. QED.

3. Slicing lines and planes.

(a) Claim 3(a): P(n): “The maximum number of segments (including rays and entire lines) a line is divided into by n
points is n + 1 segments” is true for all n € N.

Proof (induction on n): P(0) states that 0 points divide a line into one segment, which is clearly true (the segment
is the line itself). So the base case holds.
Induction step: I want to show that P(n) — P(n+ 1), so [ assume P(n) for some arbitrary n € N. Given n + 1
points p1,...,Pn+1, | arrange them from left to right along a line. This divides the line into n + 1 pieces with
left-most points py, .. ., pnt1 (respectively), plus a piece with right-most point p;, for n + 2 pieces in all. This
is the maximum number of pieces possible, since if you could divide a line into more than n + 2 pieces with
n + 1 points, then by removing one point you would divide it into n + 1 pieces (the pieces adjacent to the
removed point become a single piece), and this contradicts P(n). Therefore, P(n) = P(n + 1).
I conclude that P(n) is true for all n € N. QED.

(b) Claim 3(b)i: P(n): “The maximum number of parts (regions) that n lines can divide the plane into is n(n+1)/2+1"
is true for alln € N.

Proof (induction on n): P(0) states that the maximum number of regions that 0 lines can divide the plane into is
1, which is clearly true since 0 lines divide the plane into a single region (the plane itself), so the base case

holds.
Induction step: I want to show that P(n) = P(n + 1), so I assume that P(n) is true for some arbitrary n € N.
Suppose you have n + 1 lines l4,...,l,11. An upper bound on the number of new regions contributed by

line l,41 is given by considering how many segments [,,; is divided into by the previous n lines. Each
segment that I, is divided into by its intersections with the (at most) previous n lines lies in a different
existing region of the plane, and divides that existing region of the plane into two parts (corresponding to the
half-planes on each side of I,,;1), and by 3(a) there are no more than n + 1 such segments.

By arranging the lines in general position (every pair intersect, no three intersect) you guarantee that 1,41
encounters the n other lines, and thus contributes n + 1 new regions. By the induction hypothesis, there are
[n(n+1)/2] + 1 regions created by the previous n lines, plus a further n + 1 regions, for a total of[(n + 1)(n +
2)/2] + 1 regions, which is what P(n + 1) asserts. Thus, P(n) = P(n + 1).

I conclude that P(n) is true for all n € N. QED.

4. Claim 4(a)i: P(n): “n planes in general position (every pair of planes intersect in a single line, no three planes intersect
in a single line, every triple of planes intersect in a single point, no four planes intersect in a single point) divide
three-dimensional space into E?;ol [¢(2+1)/2] + 1) + 1 parts” is true for all n € N.

Proof (induction on n): P(0) states that 0 planes divide three-dimensional space into one part (the sum Zfz_ol([z(z +
1)/2] + 1) is empty), which is clearly true (the single part is the three-dimensional space itself). Thus the base
case holds.

Induction step: I want to show that P(n) = P(n+1), so I assume that P(n) is true for some arbitrary n € N. Now
consider n + 1 planes 71,..., Tny1-

An upper bound on the number of new regions contributed by 7,41 is obtained by considering its intersections
with the previous n planes. Each two-dimensional region that the previous n planes divide m,; into lies in a



different existing region of space created by the previous n planes. Each two-dimensional region that the (at most)
previous n planes divide 7, into divides the existing region into two parts (corresponding to the half-spaces on
either side of m,41), so (by Claim 3(b)i) plane 7,41 contributes a maximum of n(n + 1)/2 + 1 new regions.

By arranging the n+ 1 planes in general position (every pair of planes intersects in a line, no three planes intersect
in a line, every triple of planes intersect in a point, no four planes intersect in a point) you guarantee that m,;
intersects all n of the previous planes in 7 lines in general position, and contributes the maximum number of new
regions. By the inductive hypothesis the first n planes divide three-dimensional space into (E?;Ol [f(z+1)/2]+1)
parts, and 7,1 adds [n(n + 1)/2] + 1 regions. Adding the new regions to the old gives us (3.~ ,[n(n +1)/2] + 1)
+ 1, which is what P(n + 1) asserts. Therefore P(n) = P(n + 1).

I conclude that P(n) is true for all n € N. QED.

Claim 4(a)ii: P(n): “The expression (E?;ol [t((z+1)/2]+ 1)+ 1equals [[n — 1)n(n+1)/6] + n+1” for all n € N. (Thus,
by Claim 4(a)i, n planes in general position slice three-dimensional space into [(n — 1)n(n + 1)/6] + n + 1 regions).

Proof (induction on n): P(0) states that 1 equals 1, since the summation is empty. This is clearly true, so the base case
holds.

Induction step: I want to show that P(n) = P(n + 1), so I assume that P(n) (the induction hypothesis, or IH) is
true for some arbitrary n € N. Now the sum (Z?Iol_l[i(i +1)/2] + 1) + 1 can be broken into two terms, and the
induction hypothesis applied to the first term

ntl-1 n-l
( 3 G+ 1)/2) +1) +1 = (Z[i(i+1)/2] + 1) +1+4(n(n+1)/21+1)
=0 =0
_ w +n+1+(n(n+1)/2]+1)  (by IH)
_ 3n(n—|—1)+(n—1)n(n+1)+(n+1)+1
6

_ n(n+1§(n+2)+(n+1)+1,

which is what P(n + 1) asserts. Thus, P(n) = P(n =1).
I conclude that P(n) is true for all n € N. QED.

5. Remark: Although the algebra that follows may seem daunting and unmotivated, the idea that a/b = b/(a — b) implies
that b/(a—b) = (a—b)/(b—[a—b]) is clear if you sketch the corresponding rectangles (and insist on a “pleasing” ratio).
Then the job is to translate something that is geometrically clear into algebra.

b-(a-b)

Claim: There are no integers a, and b such that a/b = b/(a — b).
Proof (contradiction): Suppose there are integers a and b such that a/b = b/(a — b). Without loss of generality we can



assume that a and b are natural numbers, since

b
a—>

lal _ _[?]

bl fa -8l

a b j‘a‘_
b a—5b bl

and the equality on the right involves only non-negative integers, in other words, natural numbers. Now construct a
set A={n € N : 3n’ € N, such that n’/n =n/(n' —n)}. By our assumption, b € A (just set n = b, and n' = a), so
A is a non-empty subset of the natural numbers, and (by the principle of well-ordering) has a least element b*, with a
corresponding natural number a* such that a*/b* =b*/(a* — b*). Since a*/b* is defined, b* # 0, which, in turn, implies
that a* # 0. Cross-multiplying and dividing by non-zero a gives

a* b* . b* _ (b*)2

b_*:a*—b*:Nz_ a*

Since a* and b* are integers, so is a* — b*. Furthermore, since a* and b* are positive, so is (b*)?/a* = a* — b*, s0 a* — b*
is a positive natural number. Now consider the pleasing ratio

¥ o ar—b o b
at bt b (0a)(ar b)) b —[(0*)?/a"]
-
IR}

So a* — b* and b* are natural numbers with the property that b*/(a* — b*) = (a* — b*)/[b* — (a* — b*)], which means
that a* — b* € A. Also, a* — b* is less than b*, since by cross multiplying we showed that b* — (a* — b*) is the product
of positive factors (b*/a*) and (a* — b*). But this contradicts b* being the smallest member of A, so the assumption
that there are integers a and b such that a/b = b/(a — b) is false. QED.

Since I have shown that there is no rational number (ratio of integers) that satisfies a/b = b/(a — b), the next thing
to attempt is a solution that uses irrational numbers. Cross multiplying the equation and then solving the quadratic
equation yields:

1++/5

a?—ab-b=0=—=a=0b 5

Since I'd like a rectangle with sides of positive length, I could normalize b to have length 1, and so a would have length

(14 /5)/2.

6. Approximate arithmetic.

(a) Claim 6(a)i P(n): “If the binary expansion of natural number m contains 2k ones and no zeroes, then m is divisible
by 3” is true for all k € N — {0}.
Proof (induction on k): P(1) states that the binary expansion equivalent to Zf:lc; 12t = 24 1 is divisible by 3,
which is clearly true, so the base case holds.
Induction step: I wish to show that P(k) = P(k + 1), so I assume that P(k) is true for some arbitrary

k € N— {0}. Now the natural number with the binary expansion equivalent to Efi%+l)7l 2% can be broken
into two parts, and
2(k+1)—1 2(k4+1)—1
Z 28 | mod3 = Z 2¢| mod 3 + [2' +2°] mod 3 | mod 3 (by Fact 1)
2=0 =2
2%-1
= (lsz 22’] mod3+0> mod 3
1=0
= ([1 x 0] mod 3) mod 3 (by IH and Fact 2)
= 0Omod 3.

This is exactly what P(k + 1) asserts, so P(k) = P(k + 1).
I conclude that P(k) is true for all k € N — {0}.



Claim 6(a)ii: P(k): “The natural number with the binary expansion equivalent to Zfﬁo 2% is equal to 1 mod 3” is
true for all k € N.

Proof (induction on k): P(0) states that 2° = 1 is equal to 1 mod 3, which is certainly true, so the base case holds.
Induction step: I want to show that P(k) = P(k + 1), so I assume that P(k) is true for some arbitrary k € N.

Now the natural number with binary expansion equivalent to ng;—H) 2¢ can be broken into two parts, and
2(k+1) 2(k+1)
Z 2" | mod3 = Z 2| mod 3+ [2' +2°] mod 3 | mod3  (by Fact 1)
=0 1=2

2k

<l22 Z 2’1 mod 3 + 0) mod 3 = ([1 x 1] mod 3) mod 3 (by IH and Fact 2)
1=0

= 1.

This is exactly what P(k + 1) asserts, so P(k) = P(k+1).
I conclude that P(k) is true for all k € N. QED.

(b) Claim 6(b)i: Q(k): “If the ternary expansion of natural number m has 2k ones and no zeroes, then m is divisible
by 4” is true for every natural number k greater than 1.
Proof (induction on k): Q(1) states that if the ternary expansion of m is (11)3 , then m is divisible by 4. Well, (11)3
equals 4 in decimal notation, which is certainly divisible by 4, so the base case is true.
Induction step: I want to show that for any natural number k, P(k) = P(k + 1), so I assume P(k). This means
that number m with ternary expansion consisting of 2k ones and no zeroes (which equals Zfial 3%) is divisible
by 4, or m mod 4 = 0. By Fact 2 and Fact 3, (9m +4) mod 4 = (1 Xx 0+ 0) mod 4 =0, so

2%—1 2k—1 2k+1 2(k+1)—1
9 <Z 3") +4= (Z 3i+2> +3+3%°= (Z 3") +314380= Y 3

1=0 1=0 1=2 1=0
So, the sum on the right is divisible by 4 and equals the ternary expansion of the natural number m' that has
2(k + 1) ones and no zeroes. So P(k) = P(k+ 1).
I conclude that P(k) is true for every natural number greater than 1. QED.
Claim 6(b)ii: R(k): “If the ternary expansion of natural number m has 2k + 1 ones, and no zeroes, then m mod 4
= 17" is true for every natural number k.
Proof (induction on k): R(0) states that (1)s mod 4 = 1 mod 4. This is certainly true, since (1)3 equals (1)19, which
equals 4 x 0 + 1. So the base case is true.
Induction step: I want to show that for any natural number k, R(k) = R(k + 1), so I begin by assuming R(k).
This means that the natural number whose ternary expansion consists of 2k + 1 ones equals 1 mod 4, in other

words (Efio Si) mod4 = 1. Since 9mod4 = 1 and 4 mod 4 = 0, using Fact 1 and Fact 2 this means that

[ (Zfio si) +4]mod4 = [(1 x 1 mod 4) + 0] mod 4 = 1, so

2k 2k 2k+2 2(k+1)
9 (2331‘) +4= <Zs"+2> +3%+3 = <Z 3") +3143%°= > 3,

i=0 i=0 i=2 i=0
equals 1 mod 4. The sum on the right equals the ternary expansion consisting of 2(k 4+ 1) + 1 ones, so R(k+ 1) is
true. This shows that R(k) = R(k + 1).
I conclude that R(k) is true for all K € N. QED.
Claim 6(b)iii: If m is a natural number with a ternary expansion consisting of n twos and no zeroes, then m is
divisible by 4 if n is even, and m mod 4 equals 2 if n is odd.
Proof (direct): Suppose m is a natural number with a ternary expansion consisting of n twos and no zeroes. Then



m = Z?;Ol (2 x 3%). If n is even, then for some integer k, n = 2k, so by Claim 6(b)i and Fact 2

2k—1
m mod 4 = (2 > 31) mod 4 = (2 x 0) mod 4 = 0,
i=0
so m is divisible by 4, as claimed. If n is odd, then for some integer k, n = 2k + 1, so by Claim 6(b)ii and Fact 2
2%
m mod 4 = <2Zs’) mod 4 = (2 x 1) mod 4 = 2,
i=0

so m mod 4 equals 2, as claimed. So the claims for odd and even n hold. QED.
7. More approximate arithmetic.

(a) Claim 7(a)i: P(n): “10™ mod 9 equals 1” for all n € N.

Proof (induction on n): P(0) states that 10° mod 9 equals 1, in other words 1 mod 9 = 1, which is clearly true since
1 =9 x 0+ 1. So the base case is true.
Induction step: I want to show that for any natural number n, P(n) = P(n + 1), so I assume P(n) is true.
This means that 10" mod 9 = 1, so (by Fact 2 and the fact that 10 mod 9 = 1) we have (10 x 10") mod 9 =
(1 x 1) mod 9 =1. Thus P(n) = P(n +1).
I conclude that P(n) is true for all n € N.

Claim 7(a)ii: P(n): “Natural number (3 i, d; x 10*) mod 9 equals (.-, d;) mod 9” is true for every n € N.

Proof (induction on n): P(0) states that any one-digit number (Z?:o d; x 10i) mod 9 = d; mod 9, which is clearly
true since the sum on the left has just one term, d; x 1 = d;.
Induction step: I want to show that P(n) = P(n + 1), so I assume P(n) is true for some arbitrary n € N. This
means that I can break up (E?:"_Ol d; x 10') mod 9 into two terms, and use the induction hypothesis (IH) on
the first term

n+1 )
(Z dilol) mod 9

n
i=0 =

Z d;1 ’] mod 9 + [10"+1dn+1] mod 9) mod 9

1=0

1=0

: n
(by IH, Claim 7(a)i, and Fact 2) = < Z d,] mod 9 + [1 X dp41 mod 9] mod 9) mod 9
(apply mod 9 twice) = (

n
Z d1] mod 9 + dp, 1 mod 9) mod 9
o

n—+

(by Fact 1) d1 mod 9,

1=

which is what P(n + 1) asserts. So P(n) = P(n +1).
I conclude that P(n) is true for all » € N. QED.

(b) Claim 7(b)i: P(n): “10™ mod 11 = (—1)™ mod 11” is true for all n € N.

Proof (induction on n): P(0) states that 1 mod 11 equals 1 mod 11, which is clearly true. Thus the base case holds.
Induction step: I want to show that P(n) = P(n + 1), so I assume that P(n) is true for some arbitrary n» € N.
I can now break 10"*! mod 11 into two factors, and I can use the induction hypothesis (IH) on the first factor

10" mod 11 = (10" x 10) mod 11 = (10" mod 11 x 10 mod 11) mod 11 (by Fact 2)
(10™ mod 11 x [11 mod 11 — 1 mod 11] mod 11) mod 11 (by Fact 1)
(10™ mod 11 x [—-1 mod 11]) mod 11) mod 11 (since 11 mod 11 = Q)

([-1]" mod 11 x [-1] mod 11) mod 11 (IH, mod 11 twice)

(

[-1]*"') mod 11 (by Fact 2),



which is what P(n + 1) asserts, so P(n) = P(n + 1).
I conclude that P(n) is true for all n € N. QED.
Claim 7(b)ii: P(n): “Natural number (i ,d;10%) mod 11 equals (3., o[—1]*d;) mod 11" is true for alln € N.

Proof (induction on n): P(0) states that d; mod 11 equals d; mod 11, which is clearly true, so the base case holds.
Induction step: I want to show that P(n) = P(n + 1), so I assume that P(n) is true for some arbitrary n € N.

Now I can break up (Z?:ol di10i> mod 11 into two terms, and use the inductive hypothesis (IH) on the first

term
n+1 ) [ n "
(Z di10’> mod 11 = ( > dilo? +dn+110"+1) mod 11
1=0 | 2=0 |

- :
(by Fact 1) ( > di10°| mod 11 + [dp4110™"] mod 11) mod 11
L 2=0 i

n

> d:i10°| mod 11 + [dp 41 mod 11 x (—1)"*" mod 11] mod 11) mod 11
L2=0 _

Z di[—l]i] mod 11 + [dpy1(—1)""] mod 11) mod 11

n—;-l
(Z d,-[—1]i> mod 11,

which is what P(n + 1) asserts, so P(n) = P(n + 1).
I conclude that P(n) is true for all n € N. QED.

(by IH and Fact 2)

(by Fact 1)



