
Introduction

These notes summarize the last seven weeks of lectures (after Reading Week) in ECE203 (Discrete Mathe-
matics). We (John Carter and Danny Heap) roughly follow the schedule (soon to be posted on CC-net):

week 8:
Graphs: introduction, terminology, special graphs,
representation and connectivity.
Sections 8.1, 8.2, 8.3, 8.4

week 9:
Graphs: Eulerian and Hamiltonian paths, shortest paths,
Dijkstra and Floyd algorithms, planar graphs
Sections 8.5, 8.6, 8.7

week 10:
Graph colouring
Trees: introduction, spanning trees, MCST, Kruskal and
Prim’s algorithm
Sections 8.8, 9.1, 9.4, 9.5

week 11:
Counting: permutations and combinations
Sections 4.1, 4.2, 4.3

week 12:
Counting: binomial coefficients,
generalized permutations and combinations,
inclusion/exclusion principle
Sections 4.4, 4.5, 6.5

week 13:
Discrete probability, conditional probability
Sections 5.1, 5.2

week 14:
Recurrence relations
Sections 6.1, 6.2

Week 8
Graphs

Graphs are used in many fields to represent different problems:

• niches in an ecosystem

• planar circuit boards

• personal influence

• structure of the WWW

• efficient tours of city streets

• etcetera. . .

1

Since graphs consist (see below) of edges and nodes, basically any binary relation can be represented by
edges and be embedded in a graph.

We emphasize simple and directed graphs (no self-loops or multiple edges) but a wide set of definitions
is used by Rosen, and you may need to recognize them for some homework problems:

simple graph G = (V,E), no self loops or multiple edges, edges are unordered pairs of vertices.

multigraph Multiple edges allowed beteen a given pair of vertices, no self-edges.

pseudograph Self-edges allowed.

directed graph G = (V,E), edges are ordered pairs of vertices, self-loops are allowed.

directed multigraph Multiple edges with the same initial and terminal vertex.

Relatively small graphs can be represented using pictures — dots for vertices, lines/curves for edges.
Draw examples of an influence graph, a six-team round-robin, niche overlaps in an ecosystem, precedence in
computer statements.

adjacent: u and v are adjacent if there is an edge between them.

degree of a vertex: In an undirected graph, the number of edges incident to a vertex.

adjacent to (from): u is adjacent to v, and v is adjacent from u, if there is an edge from u to v.

in (out) degree: Number of edges that terminate (deg−(v)) at v; number of edges that originate (deg +(v)).

Easy consequences for an undirected graph:

2|e|
∑
v∈V

deg(v).

A simple graph has an even number of vertices of odd degree.
Consequence for directed graphs: ∑

v∈V
deg−(v) =

∑
v∈V

deg +(v)

Special simple graphs

Here are some special graphs:

Complete graph, Kn: The graph with n nodes with exactly one edge between each distinct pair of nodes.

Cycle, Cn: For n ≥ 3, cycles through each vertex and returns to start.

Wheel, Wn: Cycle with a central hub.

n-cube Qn: One vertex for each of the the binary string of length n. Edges exist between edges that differ
in exactly one bit.

Bipartite graphs, and Km,n: Vertices can be partitioned into two disjoint sets, and all edges are between
these two sets. Km,n is the bipartite graph where every vertex in one partition (of size m) has an edge
to every vertex in the other partition (of size n).

A simple graph is bipartite if and only if you can colour it with (at most) two colours in such a way
that neighbouring vertices never have the same colour. How would you go about automatically determining
whether a graph is bipartite or not (devise an algorithm)?

Examples: C8 is bipartite, K5 is not.
Why, in a bipartite graph is |E| ≤ |V |2/4 (homework).

2

Applications of special graphs

Star and ring topologies are used in connecting local area networks. The wheel topology combines the two.
Properties of Cn and Wn are useful in the latter two cases.

Message-passing between CPUs in parallel processing requires decisions about how many CPUs are
mutually connected. All-to-all corresponds to Kn, which is simple but expensive. A linear or grid array is
cheaper, but increases the number of hops. Hypercubes (Qn) are somewhere in between. Each node has
deg(n), which is also the maximum number of hops. There are 2n nodes.

Joining and splitting graphs

A subgraph of G = (V,E), is a graph H = (W,F), where W ⊂ W , and F ⊂ E. In addition, the edges in F
must correspond to vertices in W .

A union of simple graphs G1 = (V1, E1), and G2 = (V2, E2) is G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Graph representations

We’ve already represented some small graphs by drawing them. We can represent the same information in
a few other ways.

adjacency list For each vertex, list its adjacent (neigbouring) edges). You can easily modify to list each
the edges that are adjacent to a given vertex.

adjacency matrix If |V | = n, then an n× n matrix containing a 1 at entry i, j if there is an edge from vi
to vj , and a zero otherwise represents a graph (this matrix will be symmetric for a simple graph). To
represent multiple parallel edges, the non-zero entry can represent the number of edges from vi to vj .

incidence matrix If |V | = n and |E| = m, then an n×m matrix containing a 1 at entry i, j if vi touches
(is incident with) ej , and 0 otherwise, represents a simple graph.

Isomorphism

Sometimes two graphs two graphs may be drawn differently, or use different labels for their vertices, but they
have the same structure. One way to picture this is whether you can re-draw one graph, without changing
the adjacency of the vertices, to coincide with another. More formally. if G1 = (V1, E1), G2 = (V2, E2),
and there’s a one-to-one, onto function (i.e. a bijection) f : G1 → G2 with the property that u and v are
adjacent in G1 if and only if f(u) and f(v) are adjacent in G2, then f is an isomorphism and G1 and G2

are isomorphic.
Isomorphism can be hard to establish. Non-isomorphism follows quickly if |V1| 6= |V2|, |E1| 6= |E2|, or

some isomorphic property is not preserved (e.g. degrees of vertices).
Another way to demonstrate isomorphism is to re-order the adjacency matrix of the two graphs so that

they coincide.
Graph isomorphism is NP-complete, although some good polynomial-time algorithms are known (e.g.

NAUTY).

Connectivity

A path is a sequence of edges that begins at one vertex and terminates at another. For simple graphs, this
corresponds to a list of vertices, where each pair in the list has an edge between them. For a directed graph,
a list of vertices also describes a path, provided we interpret each edge as going from xi to xi+1.

Examples: paths in niche overlap graph, influence graph, computer network.

3

x1, . . . , xn.

A circuit is a path that begins and ends on the same vertex, and has length greater than zero. A path
passes through the vertices at the end points of the edges it traverses. A path is simple if it does not
contain the same edge more than once.

An undirected graph is connected if there is a path between every pair of vertices (no need to verify
“and back”). If a graph is connected, a simple path exists between every pair of vertices.

A path that isn’t connected is a collection of connected subgraphs (in the worst case, the individual
vertices). The connected components of a undirected graph are the maximal connected components.

Some vertices play a key role: remove them and a graph breaks into more connected components. Such
a vertex is called a cut vertex (articulation point). Analogously, an edge whose removal produces more
connected subgraphs is called a cut edge or bridge.

Things are a little more complicated for directed graphs, which are called strongly connected if there is
a path from u to v, and from v to u whenever u and v are vertices in the graph. A directed graph is weakly
connected if the underlying undirected graph is connected. Subgraphs of G that are strongly connected
but not contained in any larger strongly connected components are G’s strongly connected components
or strong components.

Paths can be used to establish (non)isomorphisms between graphs, since paths and circuits are preserved
by isomorphism. The existence of a simple circuit of a given length is a useful invariant to check.

Theorem: If A is the adjacency matrix of graph G, with respect to vertices v1, . . . , vn, then the number
of paths of length r from vi to vj is the (i, j)th entry of Ar.

(proof: induction on r).

Week 9
Euler paths and circuits

A simple path that traverses every edge of a graph is called an Euler path (after Swiss mathematician
Leonard Euler). If, in addition, the path begins and ends at the same vertex, it is an Euler circuit. The
bridges of Kallinin correspond to a non-Euler circuit (or path, for that matter).

Theorem: A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.

Proof (“only if”): Suppose G has an Euler circuit that begins on node u. The first edge of the
circuit contributes 1 to the degree of u. Every other node increases its degree by 2 when the
circuit passes through it (possibly more than once), so they all have even degree. The starting
node, u, has its degree increase by 1 when the circuit terminates there. So the degree of u
is 1 + 1 + 2 × (number of times u was passed through), and all nodes of G must have an even
degree, as claimed.

Proof (“if”): Suppose G is a connected multigraph with each vertex having an even degree. Select
any vertex, say u, to start off a circuit with. Select an unused edge to an adjoining vertex, and
continue selecting unused edges until they are used up. This process terminates, since there are
a finite number of edges. In addition, this process terminates at the original vertex u, since every
other vertex (having even degree) has an out-going edge to match each in-coming edge. We now
have a simple circuit beginning and ending at u, but we may not be done, since there may be
some unused edges left over.
Form a new graph, G′, from the unused edges and any vertices they are incident to. Since the
original graph was connected, the connected components of G′ must each share a vertex (let’s
call it u′) with the edges in the circuit we already found. In addition, each vertex of G′ has even
degree, since an even number of edges were removed from each node to form the original circuit.
Repeat the process above to generate a new simple circuit that shares vertex u′ with the first
circuit. The two simple circuits can be spliced to form a single simple circuit.

4

Repeat this process, which must terminate since at each stage more edges are used, and produce
an Euler circuit.

Some graphs have an Euler path but no Euler circuit — the simple path that uses all edges begins and
ends on different vertices. By considering what the degree of the initial and terminal vertices must be, you
get:

Theorem: A connected multigraph has an Euler path, and not an Euler circuit, if and only if it has exactly
two vertices of odd degree, all other vertices have even degree.

Proof (“only if”): Suppose connected multigraph has an Euler path from u to v (distinct vertices).
The first edge leading out of u contributes 1 to its degree, and the last edge leading into v
contributes 1 to its degree. Every portion passes through vertices (including possible passes
through u and v), contributing 2 to their degree each time. Thus u and v must have odd degree,
and every other vertex has even degree, as claimed.

Proof (“if”): Suppose G is a connected multigraph with exactly two vertices (call them u and v)
with odd degree (in other words, any other vertices have even degree. Create a larger graph, G′

with an additional vertex w and edges (u,w) and (v, w). Every vertex of G′ has even degree, so
there is an Euler circuit beginning at w. If we remove w and the edges (u,w) and (v, w) from G′,
this Euler circuit becomes an Euler path.

A simple path that visits every vertex of a graph is called a Hamilton path. A simple circuit that visits
every vertex of a graph is called a Hamilton circuit. Both are named after Irish mathematician Rowan
Hamilton.

There is no nice algorithm for determining whether a graph has a Hamilton circuit or path, even though
the question sounds very similar to the easily-answered one about Euler paths and circuits. Deciding whether
G has a Hamilton path or circuit is NP-complete.

However, some properties are known:

• If G has a vertex with degree 1, it does not have a Hamilton circuit.

• If G has a vertex with degree 2, then both must be used in any Hamilton circuit.

• If G has a vertex with degree greater than 2, once a Hamilton circuit passes through this vertex all
other edges incident with it are removed from consideration.

• A Hamilton circuit may not contain a smaller circuit.

• For n > 2 Kn has a Hamilton circuit: v1, v2, . . . , vn, v1.

Dirac’s Theorem: If G is a simple graph with n vertices (n ≥ 3), such that degree of every vertex is at
least n/2, then G has a Hamilton circuit.

(Proof omitted).

Ore’s Thorem: If G is a simple graph with n vertices with n ≥ 3 such that deg(u) + deg(v) ≥ n for every
pair of nonadjacent vertices u and v, then G has a Hamilton circuit.

(Proof omitted).

The best-known algorithms for finding a Hamilton circuit, or even determining whether there is one, are
exponential. An equivalent problem is the travelling salesman problem: Find the shortest route to visit
a set of cities, and then return home.

A Gray code is simply a Hamilton circuit in Qn.

5

Shortest paths

Graphs may have weights (real numbers) associated with their edges. These numbers might represent
geographical distance, cost, time, or some other quantity. Such a graph is a weighted graph, and the
definition of path length must be modified from the number of edges in a path to the sum of the weights of
the edges in a path.

A reasonable question is what is the shortest path between two vertices? Note that this question may
not have a well-defined answer if a graph contains negative circuits (such a circuit may allow us to drive
path length down toward −∞).

If we assume that a simple graph is connected and has nonnegative edge weights, then Dijkstra’s algorithm
will find the minimum path length from a single source (a distinguished vertex) to any other vertex.

Here’s the algorithm for simple, connected graph G = (V,E) with nonnegative edge weights and vertices
v0, . . . , vn−1 (the weight of edge (vi, vj) is w(vi, vj)). The source is v0, and the path length to vertex v using
only intermediate vertices in S is L(v).

for i = 1 to n
L(vi) =∞

L(v0) = 0
S = ∅
while S 6= V
begin

u = vertex not in S with minimal L(u)
S = S ∪ {u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) = L(u) + w(u, v)
end

We’ll call S after the ith iteration Si (So S0 = ∅), and the label on a vertex after the ith iteration Li(u).
Then

Claim: After iteration i

1. The label of every vertex in Si is the length of a shortest path from v0 to this vertex, and

2. The label of every vertex not in Si is the length of a shortest path from v0 to this vertex provided
every other vertex on the path is in Si.

Proof (induction on i): When i is zero, the claim is true by inspection, since S0 is empty and all
paths from v0 to any vertex that use intermediate vertices in S0 are infinite, except the zero-length
path to v0.
For the inductive step we must show that if the claim holds for some i ≥ 1, then it must also hold
for i+ 1. Assume that the claim holds for i. Choose some vertex u with minimal label Li(u) that
is not in Si, and assume this is the vertex to be added to S at step i + 1. If the claim holds for
case i, then the vertices in Si already have been labelled with the length of a minimum length
path from v0, so it only remains to show that the same is true of u to verify the first part of the
claim for case i+ 1. If this were not so, then there would be a path of length less than Li(u) from
v0 to u, and it must use some vertex that is not in Si. Call the first vertex outside Si in this
allegedly shorter path v. This would mean that

Li(v) + length of path from v to u < Li(u).

This would mean that Li(v) < Li(u) since every path has nonnegative length. But this contra-
dicts the choice of u, and is thus impossible. So the first part of the claim holds for i+ 1.
To establish the second part of the claim, let v be any vertex not in Si+1. There are two possibil-
ities. A shortest path from v0 to v using only vertices in Si+1 doesn’t use u, so Li+1(v) = Li(v).
Otherwise, a shortest path from v0 to v uses u, so u must be the last vertex visited in Si+1, and

6

Li+1(v) = Li(u) + w(u, v). The algorithm takes the minimum of these two quantities, so the
second part of the claim holds for case i+ 1.
The base case and induction step imply that the claim holds for i = 0, . . . n− 1. After step n− 1
S = V , so for every vertex u, L(u) is the length of a minimum path from v0 to u.

Inspecting Dijkstra’s algorithm you can see that the main loop makes n iterations, since there are n
vertices to add to S. In each iteration we find the maximum over at most n values, hence n−1 comparisons.
We then update the vertices not in Sk, using at most n − 1 operations. Hence we have O(n(2(n − 1))) or
O(n2) worst-case complexity.

Travelling salesperson problem

Consider a salesperson who must visit n cities, each pair having a road between them. If they want to
minimize the distance travelled, they must calculate a Hamilton circuit of minimum length. The most
straightforward way to do this is to consider every Hamilton circuit, and calculate its length. There are
(n − 1)! of those. A bit of economizing can be achieved by eliminating circuits that are identical to other
circuits, except for the direction: (n− 1)!/2 of those. The number of circuits to consider still grows quickly:
25 cities yields 24!/2, approximately 3.1× 1023 circuits to consider, beyond the capabilities of any computer
we can currently imagine.

Things don’t get much better. The TSP is NP-complete and no algorithm with polytime complexity is
known to exist. There are algorithms for an approximate solution (guaranteed to be no more than twice,
three times, 10 times, . . . as long as the optimal solution) that work for some cases. For example, if a
graph satisfies the triangle inequality (as a geographical map on flat ground would) then there is a polytime
algorithms that finds a solution no worse than 3/2 times as long as an optimal solution.

Iterated Dijkstra

If you’re required to find the interpair minimum path length for every pair of vertices in a graph, you can
iterate Dijkstra for each vertex of the graph (making each vertex the source, in turn). This yields O(n3)
performance, but has the important drawback that the result may not be correct if the graph has any
negative weights (but no negative cycles). A more robust algorithm is Floyd’s Algorithm, an example of
Dynamic Programming.

In Floyd’s Algorithm, define D(i, j, k) to be the minimum path length from vertex i to vertex j, provided
you are only allowed to use the vertices 0, . . . , k as intermediate steps on the path. Since you have to start
somewhere, define D(i, j,−1) to be the minimum path length from i to j where you use no intermediate
vertices, in other words w(i, j). Now for k > −1 you have:

D(i, j, k) = min{D(i, j, k − 1), D(i, k, k − 1) +D(k, j, k − 1).

. . . since this takes the minimum of paths from i to j that don’t use k, and those that do. This allows us
to fill in a table for D(i, j, k) (increasing k at each step), until we find D(i, j, n) (if n is the highest index)
for every vertex, which is the minimum path length from i to j. The exercises to this chapter show an
implementation of Floyd’s algorithm that use only 3 parameters (k is implicit).

Planar graphs

A graph that can be drawn in the plane without any edges crossing is called planar (such a drawing is a
planar representation. Since a planar graph may also be drawn with crossing edges, it may not be obvious
that it is indeed planar, take K4 and Q3 as examples. Simply trying (and failing) to draw a graph without
any crossing edges doesn’t prove that it is nonplanar.

It takes some careful reasoning to show that K3,3 is not planar. Suppose that K3,3 is partitioned so that
vertices v1, v2, and v3 each have edges to v4, v5, and v6. In a planar representation, the circuit v1, v5, v2, v4, v1

7

divides the plane into two regions, call them R1 and R2. v3 must go into one of these regions, WLOG R1.
Now the edges (v3, v5) and (v3, v4) divide this region into two subregions, say R11, and R12. Which region
can v6 go into? If it’s placed in either R11 or R12, then it must cross an edge to get to either v1 or v2.
If it’s placed in R2, then it must cross an edge to get to v3. So it’s impossible to come up with a planar
representation of K3,3.

A planar representation of a graph divides the plane up into regions, one unbounded region and the
others surrounded by edges.

Euler’s Formula: If G is a connected, planar, simple graph, the number of regions is r, the number of
edges is e, and the number of vertices is v, then

r = e− v + 2.

This is true for any planar graph. Variants of this formula hold if you try to draw a graph on a torus
or other surface without any edges crossing.

Proof: Specify a planar representation of G. Construct a sequence of subgraphs G1, G2, . . . , Ge = G
by successively adding an edge at each stage. Choose G1 arbitrarily. Obtain Gn from Gn−1 by
adding an edge that is incident with a vertex in Gn, plus the vertex at the other end of this edge,
if necessary. Let rn, vn and en be the values of r, v, and e for Gn. Proceed by induction on n.
Base case: Euler’s formula holds for Gn when n = 1, since a single edge has 2 vertices and
divides the plane into 2 regions, so 1 = 1− 2 + 2
Inductive step Assume Euler’s formula holds Gn for some n ≥ 1, and show this implies that it
holds for Gn+1. Call the edge we add to Gn to form Gn+1 (un+1, vn+1). Assume that un+1 is the
vertex shared with Gn. Now there are 2 possibilities:

1. vn+1 is already part of Gn, so adding edge (un+1, vn+1) completes a circuit and adds a new
region. Since we assumed that rn = en − vn + 2, we now have one more region and one more
edge, so

rn+1 = 1 + rn = 1 + en − vn + 2 = en+1 − vn+1 + 2.

So the claim holds in this case.
2. vn+1 is not part of Gn, so the new edge doesn’t create any new regions (both vertices are on

the boundary of a common region, otherwise we’d need to cross an edge to join them), but
the number of vertices and edges each increase by 1, and

rn+1 = rn = en − vn + 2 = en+1 − vn+1 + 2.

So the claim holds in this case.

Since the truth of the claim for Gn implies it is true for Gn+1, this implies it true for every n ≤ e.
And Ge is our original graph, which thus satisfies Euler’s Formula.

Some consequences of Euler’s Formula:

Corollary 1: If G is a connected, planar, simple graph with e edges and v vertices and v ≥ 3, then e ≤ 3v−6.

Proof: Define the degree of a region as the number of edges on its boundary. Some edges are traversed
twice on the boundary, and thus contribute 2 to the degree. Suppose a connected, planar, simple
graph divides the plane into r regions. The degree of each region is at least 3, since we don’t have
self loops or multiple edges to allow degrees of 1 or 2. The unbounded region has degree at least
3, since we require at least 3 vertices in the hypothesis.
Notice that the sum of the degrees of the regions is exactly twice the number of edges (does that
sound familiar?), and each of the degrees is at least 3 so:

2e =
∑

all regions R

deg(R) ≥ 3r =⇒ 2
3
e ≥ r.

8

Plug this into Euler’s formula:

2
3
e ≥ e− v + 2 =⇒ 3v − 6 ≥ e.

As claimed.

Corollary 2: If G is a connected, planar, simple graph, then G has a vertex of degree not exceeding five.

Proof: If G has fewer than 3 vertices, then all of them have degree at most 1, which is certainly no
more than 5. Otherwise, Corollary 1 applies, and we know that e ≤ 3v−6, so 2e ≤ 6v−12, which
implies 2e < 6v. If there were no vertex of degree 5 or less, then every vertex would have degree
at least 6, and by the Handshaking Theorem 2e ≥ 6v. But that contradicts 2e < 6v, which we’ve
already established, so there must be a vertex with degree 6 or less.

You can use Corollary 1 to show that K5 is not planar, since it has 10 edges and 5 vertices and:

e = 10 6≤ 3× 5− 6 = 9.

We’ve already used an ad hoc argument to show that K3,3 is not planar, but this fact also follows from
another consequence of Euler’s Formula:

Corollary 3: If a connected, simple, planar graph has e edges, v vertices, v ≥ 3, and no circuits of length
three, then e ≤ 2v − 4.

Proof: Suppose G is connected, simple, and planar with e edges, divides the plane into r regions, and
has v vertices. Since there are no circuits of length 3, every region (including the unbounded one)
has degree at least 4. Summing up the edges along the boundary of each region counts the edges
twice, so

2e =
∑

all regions R

deg(R) ≥ 4r =⇒ 1
2
e ≥ r.

Plug this into Euler’s formula, and

e− v + 2 ≤ e

2
=⇒ e ≤ 2v − 4.

As claimed.

You can use Corollary 3 to show that K3,3 is not planar. It has no circuits of length 3, it has 6 vertices and
nine edges, so v = 6, and e = 9, and

9 6≤ 2× 6− 4 = 8.

So which graphs are planar or nonplanar? Define an elementary subdivision as the process of replacing
an edge by two edges with a shared new vertex (the other two vertices are the original vertices of the original
edge). Two graphs are homeomorphic if the can be generated from the same graph using only elementary
subdivisions (0 or more of them). Then

Kuratowski’s theorem: A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3,3

or K5.

(proof omitted)

Week 10
Graph colouring

A colouring of a simple graph is an assignment of a colour to each vertex in such a way that adjacent vertices
do not have the same colour. If you can colour a graph with n colours, this is analogous to partitioning the
vertices into n sets where each set has no edges within it.

The chromatic number of a graph is the least number of colours needed to colour it. If G has chromatic
number n then there is an n-colouring of G, but there is no (n− 1)-colouring of G.

Examples: K4, K4-plus-a-node, and K4-plus-a-node-plus-an-edge.

9

Four colour theorem: The chromatic number of a planar graph is no greater than four.

Proof: Takes (or took) more than 100 years (Appel and Haken). The solution examines hundreds
of cases of possible counterexamples (using a computer program) and determines that no planar
graphs of that type exist. Some mathematicians are unsatisfied with proof-by-program.

The question began with the observation that it always seemed possible to colour a map with four colours,
although there are some maps that can be coloured with three colours. The conjecture was that all maps
drawn on a plane could be coloured with a maximum of four colours.

The question got boiled down into graph theory as follows. Equate the regions of the map with vertices
of a graph, and vertices have an edge between them if the corresponding regions have a boundary (not just
a single point). The graphs formed in this way will be simple, connected, and planar. So the map-colouring
problem gets re-stated as above.

The chromatic number of Kn is n, since the best you can do is colour each vertex a separate colour. The
chromatic number of Cn is 2 if n is even, since alternating colours will work. If n is odd, a third colour is
required and the chromatic number is 3.

The best-known algorithms for finding the chromatic number of a graph have exponential complexity.
Even algorithms to find a colouring that is no worse than double the chromatic number have this complexity.

Scheduling problem

Designing a schedule without conflicts can be modelled as a graph colouring problem. Suppose you must
find time slots for n exams in such a way that no student has two exams at the same time. This corresponds
to a graph G with n vertices, and there is an edge between 2 vertices if there is at least 1 student who must
write both exams. Finding the chromatic number of this graph will also tell you the smallest number of time
slots that the exams can be fit into without ever having a student required to be in two places at once.

Trees

A special category of graphs, those that are connected, undirected, and with no simple circuits are called
trees. These can be used to model geneology, parsing of mathematical expressions, searches for solutions to
problems, and many other problems. The condition that a tree has no circuits means there are no self-loops
or multiple edges, hence trees are simple graphs (but not every simple graph is a tree).

Any graph that contains no simple circuits contains a tree. In fact, every connected component of such
a graph is a tree, and the entire collection of trees is called . . . a forest.

An equivalent definition of a tree is

Theorem: An undirected graph is a tree iff there is a unique simple path between any two of its vertices.

Proof omitted

Some terminology

Rooted tree: A tree where one vertex has been designated (distinguished) as the root, and every edge is
directed away from the root. Generally we draw these with the root at the top (not very biological).

parent of v: is the unique vertex u such that there is a directed edge (u, v) (away from the root). The root
has no parent.

child of u: if u is v’s parent, then v is u’s child.

siblings: vertices that share a parent.

ancestors of v: those vertices on a path from the root to v, not including v itself. The root is every vertex’s
ancestor, except itself.

10

descendents of v: those vertices that have v as an ancestor.

leaf: A vertex with no children.

internal vertex: A vertex with at least one child.

subtree rooted at u: subgraph of the tree consisting of u and all its descendents, and the edges incident
to u’s descendents.

m-ary tree: A tree where every vertex has no more than m children.

full m-ary tree: A tree where every internal vertex has exactly m children.

binary tree: An m-ary tree with m = 2.

ordered rooted tree: A rooted tree where children of internal nodes are ordered. This ordering is indi-
cating in drawing the children from left to right.

ordered binary tree: A binary tree where the children of internal nodes are designated right child and
left child. The subtrees rooted at these children at designated left subtree and right subtree.

Here are some properties of trees that aren’t hard to prove:

Theorem: A tree with n vertices has n− 1 edges.

Proof: Homework question #20 on page 575 proves something very similar.

Theorem: A full m-ary tree with i internal vertices contains n = mi+ 1 vertices.

Proof: There are mi children in a full m-ary tree. This counts every vertex except the root, so there
are mi+ 1 vertices in total.

Once you know one of n (number of vertices), i (number of internal vertices), or l (number of leaves),
you can use algebra to find the other two:

Theorem: A fullm-ary tree with

1. n vertices has i = (n− 1)/m internal vertices and l = [(m− 1)n+ 1]/m leaves.

2. i internal vertices has n = mi+ 1 vertices and l = (m− 1)i+ 1 leaves.

3. l leaves has n = (ml − 1)/(m− 1) vertices and i = (l − 1)/(m− 1) internal vertices.

Proof: Algebra.

Level of v in rooted tree: Length of the path from root to v. The root has level 0.

Height of a tree: Maximum level of its vertices, in other words the length of the longest path to one of
the leaves.

Balanced tree: A tree of height h with all leaves at level h or h− 1.

Theorem: There are at most mh leaves in an m-ary tree of height h.

Proof: When m = 0 we have a tree with a single leaf — the root, and height h = 0. This is the base
case. Use complete induction: assume that the claim holds for every tree with height less than
h, for some h > 0. Then the children of the root node are all m-ary trees with height at most
h − 1, so they each have no more than mh−1 leaves. The sum of all the leaves is thus no more
than m×mh−1 or mh, and the induction step is proved.

Theorem: An m-ary tree of height h with l leaves must have h ≥ dlogm le. If this m-ary tree is full and
balanced, then h = dlogm le.

Proof: Omitted (it’s in the text).

11

Spanning trees

Spanning tree: If G is a simple graph, then T is a spanning tree of G if T is a subgraph of G, is a tree,
and contains every vertex of G.

Theorem: A simple graph is connected iff it has a spanning tree.
Proof (sketch): Suppose G has a spanning tree T . By the definition of a spanning tree, T is

connected and contains every vertex in G. Thus every pair of vertices in G are connected:
there is a path between them in T .
On the other hand, suppose G is a simple connected graph. If it has no simple circuits, then
G is its own spanning tree. Otherwise, an edge can be removed from a simple circuit without
making G disconnected. Remove edges from circuits until none are left, and the result is a
spanning tree for G.

The proof just given assures us that we can always find a spanning tree for a connected simple graph
G. However, checking at each step for simple circuits is an expensive operation. It would be easier to add
edges from G to T in such a way that no circuits are created and T remains connected, until every vertex is
included in T .

One approach is Depth-first search of a simple connected graph. The idea is to choose any vertex u
arbitrarily as the starting point (and the root of the spanning tree). Now choose a neighbour of u that hasn’t
been visited yet (say v), add the edge (u, v) to T , and continue the process for neighbours of v. When this
process terminates, return (backtrack) to unvisited neighbours of the parent of the last vertex visited, and
then its parent, and finally back to u. Here’s this procedure stated as an algorithm:

procedure visit(v: a vertex of G)
for each vertex w adjacent to v and not yet visited

add w and edge (v, w) to T
visit(w)

end for
procedure DFS (G: connected graph with vertices v1, . . . , vn)
T = v1 (and no edges)
visit(v1)

For the procedure visit we need to keep track of the neighbours of v until we visit them. The appropriate
algorithm for this is either recursive (as above) or uses a stack to keep track of neighbours that have not yet
been explored.

Another approach is Breadth-first search of a simple connected graph. Again choose any vertex u
arbitrarily as the root of the spanning tree. The neighbours of u become level 1 of the spanning tree, by
adding all edges from u to them. The unvisited neighbours of the level 1 vertices become level 2 of the
spanning tree, by adding all edges from level 1 vertices to them. And so on.

procedure BFS (G: connected graph with vertices v1, . . . , vn)
T = v1 (and no edges)
L = empty list (queue)
Put v1 into L
while L is not empty

remove the first vertex from L
for each neighbour w of v

if w is not in L or T then
add w to the end of the list L
add w and the edge (v, 2) to T

end if
end for

end while

12

Minimum spanning trees (MST)

In many cases a connected graph has several spanning trees. It can be important to find the one that
minimizes the sum of the edge weights — this may correspond to the lowest-cost solution to a problem, for
example keeping a network of towns (or computer nodes) connected.

A minimum spanning tree in a connected, weighted graph is a spanning tree that has the smallest
possible sum of edge weights. There are several ways to find one, and two are presented.

Prim’s algorithm solves this problem by building up a spanning tree, edge-by-edge, always keeping the
intermediate graph connected and without simple circuits, and choosing the lightest possible edge at each
stage. To keep the developing solution connected and simple circuitless, you choose edges that are incident
to one vertex already in the developing solution (keeping things connected), but with the other vertex not
already in the developing solution (avoiding cycles).

procedure prim(G: weighted, connected, undirected graph with n vertices)
T := a minimum-weight edge (with its two vertices)
for i := 1 to n− 2

e := a minimum-weight edge incident to some vertex in T that won’t form a simple circuit if added to T
T := T with e and its end points added

end for T is a minimum spanning tree of G

A similar algorithm that builds an MST by selecting the lightest edge at each step (not necessarily
connected to each other) so long as it doesn’t create a cycle is Kruskal’s algorithm.

procedure kruskal(G: weighted, connected, undirected graph with n vertices)
T := empty graph
for i := 1 to n− 1

e := any edge in G with minimum weight that doesn’t form a simple circuit when added to T
T := T with e and its end points added

end for T is a minimum spanning tree of G

In both Prim’s and Kruskal’s algorithm you may have more than one choice of a minimum edge to
choose at any given step. The algorithms find minimum spanning trees whichever choice you make in such a
situation, and there are sometimes more than one MSTs for a given graph. An extreme example is a graph
with several spanning trees and with all edge weights equal (for example, weight 1).

Theorem: Prim’s algorithm produces a minimum spanning tree of a connected, weighted, undirected graph.

Proof (by contradiction): Suppose that G is a connected, weighted, undirected graph with n ver-
tices, and that Prim’s algorithm produces S = e1, . . . , en−1 (together with vertices at their end-
points). Call the subgraph of S containing edges e1, . . . , ek Sk (so S0 is an empty tree). Note
that Sk is a tree for every 1 ≤ k ≤ n− 1, because of the way it is constructed. Suppose S is not
a spanning tree. Then there is a maximum k such that Sk is contained in some spanning tree T .
Since we are assuming that S 6= T , it must be the case that k 6= n − 1. So T contains all the
edges of Sk, but not ek+1. Add Ek+1 to T to form a new graph H. H has n edges (one more than
T), so it must have a simple circuit (if it didn’t, it would be a tree, and it has too many edges
for that). The simple circuit contains ek+1, since there was no simple circuit in T . There must
also be an edge in this simple circuit that doesn’t belong to Sk+1, since Sk+1 has no circuits, by
construction.
Start at an endpoint of ek+1 that is shared with Sk, and follow the circuit until you encounter the
first edge (call it e) that is not in Sk. Delete this edge from H, and you obtain a tree (it has n−1
edges). Call it T ′. T ′ contains Sk+1, and has weight ≤ T , since (by Prim’s algorithm) edge ek+1

was chosen instead of e, meaning that ek+1 had weight no more than e. But this contradicts the
assumption that k is the maximum index (less than n− 1) such that there is an MST containing
Sk. Thus k = n− 1 and Sn−1 is a minimum spanning tree.

13

Here are the key steps in the proof:

1. Assume that S is not an MST, an assumption that we will try to use to lead to a contradiction.

2. Ask “where is the first edge in S where we went wrong?” Restate this as “what is the highest index
k such that some MST contains e1, . . . , ek?” Notice that k could be zero (all our edges are wrong),
but k cannot be n− 1, since then the only MST containing e1, . . . , en−1 would be S itself (which we’ve
assumed is not an MST).

3. Let T be an MST that contains e1, . . . , ek. Construct a new graph H by adding ek+1 to T .

4. Convince yourself that H contains a simple circuit (it has too many edges to be a tree). Convince
yourself that it has a simple circuit containing ek+1 (no circuit existed before this edge was added).

5. Convince yourself that this simple circuit must contain an edge that is not in e1, . . . , ek+1. Start at the
endpoint shared by ek and ek+1 and trace this circuit (away from ek+1 until you encounter the first
edge that isn’t in e1, . . . , ek+1, call this edge e.

6. delete e from H (you’re exchanging it for ek+1), creating a new tree T ′.

7. Show that T ′ has sum of edge weights ≤ than that of T , so it is an MST, yet it contains e1, . . . , ek + 1,
contradicting the assumption that the highest index is k.

You can prove Kruskal’s algorithm with a similar approach, but in addition you have to show that you
end up with a tree at the end.

By using the appropriate data structure for finding a minimum-weight edge at each step, Prim’s algorithm
can be implemented in O(e log v) complexity, whereas Kruskal can be implement with O(e log e) complexity.
Thus Prim’s algorithm is somewhat better, except in very sparse graphs (where |E| ≈ |V |).

Week 11
Counting

Three fundamental counting techniques for finite sets can be manipulated in a surprising variety of ways:

1. |A×B| = |A| × |B| (product rule).

2. If A and B are disjoint, |A ∪B| = |A|+ |B| (sum rule).

3. In general |A ∪B| = |A|+ |B|+ |A ∩B| (inclusion/exclusion).

Most people are satisfied with finding these facts self-evident. For example, since |A×B| is the number of
ordered pairs with the first component from A and the second from B, it seems clear that there are |A|× |B|
of these. You could also demonstrate this with a bijection. If |A| = n and |B| = m, then there is some
bijection f(A) → {1, . . . , n}, or equivalently you can label the elements of A = {a1, . . . , an}. Similarly you
can label the elements of B = {b1, . . . , bm}. Now convince yourself that

g(ai, bj) = m(i− 1) + j

. . . is a 1-to-1, onto function from A×B to {1, . . . ,mn}.
Similar bijections can be constructed for the sum rule and inclusion/exclusion rule, if desired.
Once you figure out how a problem can use one or more of these rules, you can solve many of them.

Dudley lock: A common combination lock has 60 possible positions, 0. . . 59, and you must choose 3 posi-
tions in order. The total number of possible combinations is |A×A×A|, where |A| = 60, so there are
216,000 combinations. Or you can send mail to Dudley corporation.

Binary string of length n: Here A = {0, 1} and we need to know |A × · · · × A| = 2 × · · · × 2 (n times),
or 2n.

14

Functions from A to B: If |A| = n, and |B| = m, then each function from A to B associates each element
of A with an element of B. You can model the function as a set of ordered n-tuples, each element
corresponding to the value of B that a particular value of A gets sent to. The number of such n-tuples
is |B × · · · ×B| (n times), or mn.

One-to-one functions from A to B: You’re out of luck if |B| < |A| — two elements of A must be sent
to some element of B. Assume that |A| = n and |B| = m, and m ≥ n. Count as before, but now we
want the number of n-tuples where there are no repeat elements. We have our choice of m elements
for the first position, m− 1 for the second, continuing down to m− n+ 1 choices for the nth element.
This is m!/(m− n)!.

Power set of A: How many subsets does A have (counting the empty set) if |A| = n? There’s a one-to-one
correspondence between subsets of A and a family of functions fi : A→ {0, 1}, where fi(aj) is 1 if aj
is in the subset corresponding to fi, 0 otherwise. How many such functions can there be? The same
as the number of binary strings of length n: 2n. (You can also prove this fact using induction on the
size of A, where the base case is A is empty).

C identifiers: An identifier in C is a string that can contain alphabetic characters, digits, or underscores.
The first character must be alphabetic or an underscore. Only the first 8 characters matter in distin-
guishing identifiers. How many distinct identifiers are there? The first characters may take one of 53
values. Sum up the size of the dijoint sets of 1-, 2-, 3-, 4-, 5-, 6-, 7-, and 8- character identifiers:

53 + 53× 63 + 53× 632 + 53× 633 + 53× 634 + 53× 635 + 53× 636 + 53× 637 ≈ 2.1× 1014.

Binary strings beginning with 1 or ending with 11, of length 7: Count both sets separately: there
are 26 of the first sort and 25 of the second. If we add these, we’ll have counted strings that are in
both sets twice, so we subtract the 24 strings that are in both:

26 + 25 − 24 = 80.

Pigeonhole Principle

Assume that the number of pigeons and holes for them to roost in is finite. If there are k + 1 to go into k
holes, then there must be a hole that gets 2 or more pigeons. Pigeons come in integer increments, and we
resist the idea of putting (k + 1)/k pigeons in each hole.

Pigeonhole Principle: If there are at least k+ 1 pigeons to be placed in k holes, then there is at least one
hole with two or more pigeons.

The art of using the Pigeonhole Principle is deciding what are your pigeons and what are your holes.
The same idea works to show that 3, 4, 5, . . . or more pigeons must be in some hole:

Claim: Every integer n has a multiple consisting entirely of 1s and 0s.

Proof: Write down the numbers 1, 11, 111, . . . , 1111 · · · 11︸ ︷︷ ︸
n+1 times

. There are n + 1 numbers in this list, and

there are only n possible remainders after division by n: {0, 1, . . . , n−1}. Our pigeons are numbers
in the list, the holes are remainders after division by n, so two of the numbers must have the same
remainder after division by n. Subtract these two numbers (yielding a number made up entirely
of 1s and 0s), and you have a number divisible by n.

Generalized Pigeonhole Principle: If N pigeons are placed in k holes, then there is at least one hole
containing dN/ke pigeons or more.

15

Proof: Use the definition of ceiling to show that dN/ke < (N/k) + 1. Then if all the holes had less
than dN/ke pigeons, there would be a total of

k
(⌈n
k

⌉
− 1
)
< k

((
N

k
+ 1
)
− 1
)

= N.

This contradicts the fact that we’ve assumed we have N pigeons.

Claim: Assume that no human has more than 300,185 hairs on their head (not including facial hair), and
that there are 2,100,000 people in Toronto. Then there are 7 people in Toronto with exactly the same
number of hairs on their head.

Question: How many cards must be selected from a deck in order to be sure there is three-of-a-kind?

Claim: Among n+ 1 positive integers smaller than 2n there is at least one that divides another.

Proof: Decompose the n+ 1 integers into the highest power of 2 that divides them and an odd factor,
so now we have a set {2k1q1, . . . , 2kn+1qn+1}. The odd numbers q1, . . . , qn+1 must be in the set
{1, 3, 5, . . . , 2n − 1}, and there are n numbers from this set. Thus there are two numbers 2kiqi
and 2kjqj where qi = qj . Choose the smaller of ki and kj , and the corresponding number divides
the other.

Claim: In any group of 6 people there are either 3 mutual strangers or 3 mutual acquaintences (or possibly
both).

Proof: Choose one of the six people. This person has either at least 3 acquaintences or 3 strangers
among the other 5. WLOG they have 3 acquaintences. If any of the 3 acquaintences are acquainted
with each other, then we have three mutual acquaintences. Otherwise we have 3 mutual strangers.
This situation is sometimes expressed as R(3, 3) ≤ 6. R(m,n) (the Ramsey number for (m,n)) is
the minimum number of people such that either at least m are acquaintences or n are strangers. In
fact, you can show that R(3, 3) = 6 by constructing a situation where among 5 people the number
of mutual acquaintences or strangers never exceeds 2. In general it’s quite hard to find R(m,n)
where 3 ≤ m ≤ n (only 9 are known). For example 43 ≤ R(5, 5) ≤ 49, but no improvement on
this bound has been shown.

Claim: Suppose 10 million Canadians earned less than 100,000 dollars last year, but more than nothing.
Show that at least two of them earned exactly the same amount, to the penny.

Question: How many numbers do you need to select from the set {1, 3, 5, . . . , 4n− 3, 4n− 1} to ensure that
you have at least one pair whose sum is 4n?

Claim: If |A| > |B|, show that there are no 1-to-1 functions from A to B.

Claim: Suppose there are at least two people at a party. Then there are at least two people who know the
same number of people.

Permutations and combinations

An ordered arrangement of r distinct elements from a set of n elements is denoted P (n, r). In the extreme
case, P (n, n) = n!. Calculating this number, using the product rule, gives n choices for the first element,
n− 1 choices for the second, . . . , until we reach n− r + 1 choices for the rth element, or

P (n, r) = n(n− 1) · · · (n− r + 1) =
n!

(n− r)!
.

Question: How many circular arrangements of ABCDEFGH are there? Two arrangements are considered
the same if, once you find A, the sequences are the same reading clockwise .

16

Solution: Fix the position of A. Now there are 7 choices for the character counter-clockwise to its
right, 6 choices for the character to the right of that, . . . , or 7! = 5040 circular arrangements in
all.

Question: How many circular arrangements of ABCDEFGH are there if you require that ADG occurs in
the sequence (in counterclockwise order)?

Solution: Treat ADG as a single character, and solve as before: 5! or 120 circular arrangements.

Question: How many circular arrangements of ABCDEFGH are there if you require that ADG may not
occur in the sequence?

Solution: Subtract the number of prohibited arrangements from the total: 7!− 5! = 4920.

An r combination of elements of a set is simply a subset (unordered, by definition) of size r. Denote the
number of r-combinations from a set of size r as C(n, r), sometimes denote

(
n
r

)
— the binomial coefficient.

The quantity can be calculated by noting that if we consider all the r-permuatations of the r-combinations,
we generate all r-permutations of n elements or P (n, r), so

P (r, r)C(n, r) = P (n, r) =
n!

(n− r)!
=⇒ C(n, r) =

P (n, r)
r!

=
n!

r!(n− r)!
.

Notice the symmetry: C(n, r) = C(n, n − r). This follows from the expression itself, by you can also
reason independently: For each subset of size r that we select there is exactly one subset of size n− r that
we are deselecting. So the number of subsets of size r is the same as the number of subsets of size n − r.
This proves that both expressions are counting the same objects in different ways, and thus must have the
same value — a combinatorial proof.

Question: How many subsets of size two are there of the set {a, b, c, d, e}?

Solution: C(5, 2) = C(5, 3) = 10. For each subset of size 2 of {a, b, c, d, e} there’s a corresponding
subset of size 1 that’s been excluded.

Claim: C(n, 0) + C(n, 1) + · · ·+ C(n, n) = 2n.

Proof: This result could be solved using induction, with the base case n = 0 (the empty set has a
single subset: itself). Another approach is to notice that every subset of a set of n elements
corresponds to an ordered binary n-tuple that contains a 1 at position i if the ith element is in
the subset, and a zero otherwise.

Question: How many ways are there for eight men and five women to stand in a row so that no two women
are adjacent? How about eight indistinguishable men dressed in blue, and five indististinguishable
women dressed in green?

Solution: In the first situation, first permute the men in 8! ways. For each of these permutations there
are 9 inter-men “slots” to for 5 women to choose from, so 8!×P (9, 5) = 609638400 arrangements.
In the second situation, there’s only one way for the men to arrange themselves (we can’t tell
the arrangements apart). There are 9 inter-men “slots” for the women to distribute themselves
among in C(9, 5) = 126 ways.

Question:] How many six-lowercase-letter strings (from our alphabet) contain:

1. The letter a?

2. The letters a and b?

3. a and b in consecutive positions, with all the letters distinct (a must precede b).

4. a occurs before b, all letters distinct.

17

Solution: Some solutions use permutations and combinations, some don’t:

1. There are 266 strings of lowercase letters, 256 don’t include a, so 266−256 = 64775151 include
an a.

2. There are 266 strings of lowercase letters, 256 don’t contain a, 256 don’t contain b, and 246

contain neither a nor b. So 266 − (2× 256 − 246) = 11737502 strings contain both a and b

3. Glue a and b together. The four other letters can be arranged in P (24, 4) ways, and then the
remaining superletter can be inserted into 5 slots: 5× P (24, 4) = 1275120 ways.

4. From six slots, select 2 for a and b in C(6, 2) ways. Letters for the remaining 4 slots can be
arranged in P (24, 4) ways, for a total of C(6, 2)× P (24, 4) = 3825260.

Week 12
Binomial theorem

The number C(n, r) is also denoted
(
n
r

)
, for the binomial coefficient. The motivation for this notation is that

the coefficients of the nth power of a binomial are related in the following way:

Binomial Theorem:

(x+ y)n =
n∑
r=0

(
n

r

)
xn−ryr.

Proof: You could prove this by induction on n, however a combinatorial proof is probably more
instructive. The product (x+ y)n will have terms of the form xn−ryr, for r running from 0 to n.
Each such term is formed by choosing r ys and n− r xs from the factors of the form (x+ y). This
can be done in

(
n
r

)
ways.

This can be used in wide-differing applications:

Question: Expand (x+ y)8.

Claim:
∑n
k=0

(
n
k

)
= 2n.

Proof: This is (yet) another way of providing that the number of subsets of a set with n members is
2n. Now use the binomial theorem with x = y = 1.

Claim: (a+ 1)n =
∑n
r=0

(
n
r

)
an.

Proof: Binomial Theorem. Consider the two ways we had of calculating how many strings of length
6 had at least one a in them.

Claim:
∑n
k=0(−1)k

(
n
k

)
= 0.

There are many identities satisfied by binomial coefficients (and tons of them are collected in Pascal’s
Triangle). Here’s one that helps us construct binomial coefficients by addition:

Pascal’s Identity: Suppose n and k are positive integers, with n ≥ k. Then(
n+ 1
k

)
=
(

n

k − 1

)
+
(
n

k

)
.

proof By definition
(
n+1
k

)
is the number of subsets of size k from a set of size n + 1. Let x be a

particular element of a subset with n + 1 elements. Then each subset of size k either includes x
or it doesn’t. Those that don’t include x are chosen from among n elements, so there are

(
n
k

)
of

them. Those that do include x choose the other k− 1 elements from among n, so there are
(
n
k−1

)
of them. The sum proves the claim.
You could also prove this by induction on the formula for C(n, r), but that would be messy.

18

Vandermonde’s Identity: Suppose m,n, and r are nonnegative integers with r no greater than either m
or n. Then (

m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)
.

Proof: The left-hand side tells us how many ways there are to choose size r subsets of a set with
m + n elements. The right-hand side tells us the same thing (counting in a different way). For
each subset of size r − k we choose from a set of size m, we choose a subset of size k from a set
of size n, and the product rule gives us the right-hand side.

Claim:
(

2n
n

)
=
∑n
k=0

(
n
k

)2.

Proof: Vandermonde’s Identity, with m = n.

Question: How many subsets of size 2 are there of the union of {a, b, c} and {d, e, f}?

Solution: Use Vandermonde’s Identity with m = n = 3 and r = 2.

More counting techniques

From a few simple ideas we’ve built up some powerful counting techniques. However some problems don’t
fit into these molds. First consider what happens to our count of combinations when we allow repetitions:

Question: How many different amounts of cash can you make by choosing coins from 1 penny, 1 nickle, 1
dime, and 1 loony?

Solution: Since each coin can be either in or out of the amount, the different amounts correspond to
writing either a zero or a 1 on each coin. Hence 24 amounts

Question: If you can choose 3 coins from the denominations penny, nickle, dime, looney, how many
different collections of coins can you have (there are at least 3 coins of each denomination available)?

Solution: You could begin listing 3 pennies, 2 pennies and a nickle, 2 pennies and a dime, 2 pennies
and a looney, . . . but that gets tiresome. Since there are 4 categories, you can model them as 3
bars (or walls) separating the 3 cs (for coins) into categories. From the 3 + 3 possible positions
(cs and bars), once you’ve chosen the position of the 3 c’s, you have specified one choice. This
means there are C(6, 3) ways to choose 3 coins from the 4 categories.

This exercise leads to the result:

Claim: There are C(n+ r − 1, r) r-combinations from a set with n elements when repetition is allowed.

Proof: Model each r-combination of a set with n elements as a list of r cs and n− 1 bars. From these
n+ r − 1 positions, each r-combination corresponds to choosing r positions for the cs.

Question: How many solutions does
x1 + x2 + x3 + x4 = 15

have if x1, x2, x3, x4 are all nonnegative integers?

Solution: This problem corresponds to distributing 15 1s into 4 boxes labelled x1, x2, x3, x4. This can
be done in C(15 + 3, 15) ways: C(18, 15) = C(18, 3) = 18(17)(16)/6 = 816.

Now consider what happens to our count of permutations of n elements when some repeat.

Question: How many different ways are there to arrange the letters in MISSISSIPPI?

19

Solution: There are 4 Ss, 4 Is, 2 P s, and 1 M , for 11 characters in all. From the 11 available positions,
you can choose 4 for the Ss in C(11, 4) ways. From the remaining 7 slots, you can choose 4 for
the Is in C(7, 4) ways. From the remaining 3 positions, you can choose 2 for the P s in C(3, 2)
ways. And from the last available position, you can choose a position for the M in C(1, 1) way,
yielding:

C(11, 4)× C(7, 4)× C(3, 2)× C(1, 1) =
11!
4!7!
× 7!

4!3!
× 3!

2!1!
× 1!

1!0!
=

11!
4!4!2!1!

.

Claim: The number of different permutations of n objects when there are n1 indistinguishable objects of
type 1, n2 indistinguishable objects of type 2, . . . , nk indistinguishable objects of type k is

C(n, n1)C(n− n1, n2), · · ·C(n− n1 − n2 · · · − nk−1, nk) =
n!

n1!n2! · · ·nk!
.

Proof: The positions for the objects of type 1 can be chosen in C(n, n1) ways. For each of these, the
positions for the objects of type 2 can be chosen in C(n− n1, n2) ways. The product rule yields
the result, and cancellation in the expression for the ratio of factorials yields the expression on
the right.

Question: How many ways are there to distribute 5 cards to each of 4 players from a standard deck with
52 cards?

Solution: Line up the 52 cards in some order from left to right. Now create another deck with 5 cards
marked “hand 1,” 5 cards marked “hand 2,” 5 cards marked “hand 3,” 5 cards marked “hand 4,”
and 32 cards marked “rest of deck.” If you permute this second deck, and line up the cards with
the original deck, it corresponds to a way of distributing 4 hands. The number of ways you can
permute your specially made-up deck is

52!
5!5!5!5!32!

,

. . . according to the claim above

Claim: In how many ways can you distribute n distinguishable objects into k distinguishable boxes so that
ni objects go into box i, where i = 1, 2, . . . , k?

n!
n1!n2! · · ·nk!

.

Proof: Line up the n objects in some order. Now create another collection of n items with ni of type
i. Permute this second collection in n!/(n1!n2! · · ·nk!) ways, each permutation corresponds to a
distribution of the original n items into boxes.

Inclusion/exclusion

We’ve already seen that:
|A ∪B| = |A|+ |B| − |A ∩B|.

This result can be extended to three sets:

|A ∪B ∪ C| = |A ∪B|+ |C| − |(A ∪B) ∩ C|
= |A|+ |B|+ |C| − |A ∩B| − |(A ∩ C) ∪ (B ∩ C)|
= |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

There are two patterns to notice here. For the union of two sets our formula has 22−1 terms, and for the
union of three sets our formula has 23 − 1 terms. Another pattern is the alternating sum: add intersections
of 1 set, subtract intersections of two sets, add intersections of three sets... Can this be generalized?

20

Claim: Suppose A1, . . . , An are finite sets.

|A1 ∪ · · · ∪An| =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+ · · ·+ (−1)n+1|A1 ∩ · · · ∩An|.

Proof: The left hand side counts every element of the union of the n sets. Suppose x is an element of
the union A1 ∪ · · · ∪An. We’ll check that the right-hand side counts x exactly once (no more, no
less). x must belong to 1 ≤ r ≤ n of the sets A1, . . . , An. The first summation counts x C(r, 1)
times, the second summation subtracts counts of x C(r, 2) times, the third summation counts x
C(r, 3) times, yielding:

C(r, 1)− C(r, 2) + · · ·+ (−1)r+1C(r, r)

. . . times. Since the alternating sum
∑r
k=0(−1)kC(r, k) is zero (proved previously), the sum in

question equals C(r, 0) = 1. So x is counted exactly once, and the right-hand side counts every
element of the union exactly once. Also notice that the expression in the claim has

∑n
k=1 C(n, k) =

2n − 1 terms, fitting the pattern we already noticed.

Question: How many solutions of x1 + x2 + x3 = 11 have x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6, and all the xi are
nonnegative integers?

Solution: We already know (walls and balls) how to find the number of solutions when the only
restriction is that the xi are nonnegative integers: C(13, 2) = 78. Suppose A is the set of solutions
where x1 > 3, B is the set of solutions where x2 > 4, and C is the set of solutions where x3 > 6.
If we subtract |A ∪B ∪ C| from 78, we’ll have our answer.
Using our previous technique, we can see that |A| = C(9, 2) = 36, |B| = C(8, 2) = 28, and
|C| = C(6, 2) = 15. Similarly, |A ∩ B| = C(4, 2) = 6, |A ∩ C| = C(2, 2) = 1, and all the other
intersections are empty, so

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C| = 36+28+15−6−1 = 72

78− 72 = 6, so there are 6 solutions satisfying the constraints.

Counting summarized

You’ve seen a number of counting techniques, and you need to decide how to cpply them to a particular
problem. You need to ask:

• Arrangements versus selections (permutations versus combinations)?

• Repetitions allowed or not?

• Is it easier to count something or its complement?

• Does this problem resemble something I’ve seen before?

Sketch solutions to these:

1. Find the number of 8-letter strings that can be formed using all 8 letters of MONTREAL

(a) no restrictions
Solution: eight distinct characters can be permuted in 8! ways.

(b) first letter must be M
Solution: Once the first letter has been fixed at the beginning, there are 7! permutations of the
other 7 characters.

(c) vowels together
Solution: Glue OEA into a super-letter, and permute the resulting six letters in 6! ways. How-
ever, for each of these arrangements there are 3! arrangements of the three vowels, so 6!3! in
all.

21

(d) MN separate
Solution: Remove M and N and permute the remaining 6 letters in 6! ways. There are 7 gaps
in which to place M and N (before, between, and after the other six letters) and you can select
one for the M , and N in P (7, 2) ways. Altogether, P (7, 2)× 6!.
Alternatively, count the number of arrangements where MN are together, and subtract this
number from 8!.

(e) not all vowels together
Solution: Subtract the solution for vowels together from 8!.

(f) vowels all apart
Solution: Permute the non-vowels in 5! ways. There are 6 gaps before, between, and after these
letters, and you can assign three of these two the three vowels in P (6, 3) ways. So, altogether
P (6, 3)× 5! arrangements.

Week 13
More counting examples

1. Find the number of arrangements of 4 women and 6 men in a row

(a) no restriction
Solution: Permute ten distinct objects in 10! ways.

(b) women can never be adjacent
Solution: Permute the six men in 6! ways. There are now seven gaps before, between, and after
the men, and these can be assigned to the four women in P (7, 4) ways, for a total of 6!× P (7, 4)
arrangements.

(c) men indistinguishable, women indistinguishable
Solution: From ten available slots, choose four for the women in C(10, 4) ways. Equivalently,
choose six for the men in C(10, 6) ways.

(d) as previous, but women may not be adjacent
Solution: Place the men with a space between each. There are seven spaces, and you can choose
the four that will be occupied by women in C(7, 4) ways.

2. Find the number of committees of size 4 that can be formed from 6 women and 4 men

(a) no restriction

(b) equal number of men and women

(c) one or more women

(d) Gordon and Nina won’t serve together

3. 20 coloured light of which 4 are defective. How many ways are there to select 8 lights so that at least
6 work?

4. Find the number of 5-card poker hands that contain

(a) one pair (at least)

(b) 2 pairs

(c) a flush (all same suit)

(d) a full house (a pair plus three-of-a-kind)

5. Number of four-letter “words” from TORONTONIAN .

6. From the digits 0, 1, 2, 3, 4, 5, 6 how many nonnegative numbers less than 5000 can be formed?

22

(a) If repetitions are allowed? (cases)

(b) No digit may be repeated?

(c) Odd, with no digits repeated? (leave with them)

Probability

Terminology:

Experiment: A process with a finite set of outcomes: tossing a coin, rolling a die, having kids.

Sample space: Set of all possible outcomes of an experiment.

Event: Set of outcomes: e.g. (from one roll of a die) rolling an even number, rolling more than 9, rolling a
5, rolling over 10 (empty set)

Probability: A number associated with an event E that satisfies 0 ≤ P (E) ≤ 1 and the sum of the
probabilities of all outcomes is 1. Probability reflects the strength of our belief that an event will
occur.

Equally likely events: P (E1) = P (E2).

Impossible event: P (E) = 0.

Certain Event: P (E) = 1.

Probability with equally likely outcomes: If we believe all outcomes are equally likely, then P (E) =
|E|/|S|.

• tossing a coin

• tossing a coin 3 times

• tossing a pair of dice (contrast outcomes and events)

If we assume all outcomes are equally likely, then we simply calculate the size of the sample space, |S|,
and the size of the favourable event, |E|, and P (E) = |E|/|S|. Often the sample space can be listed,
or drawn as a tree.

Sums of probabilities: P (E1∪E2) = P (E1)+P (E2)−P (E1∩E2). Example: E1 is the set of all three-coin
tosses that contain exactly two heads, and E2 is the set of all three-coin tosses that begin with a head.

Complementary Event: P (E1) = 1− P (E2).

Question: What is the probability that three coin tosses result in TTH (in that order)? What is the
probability that three coin tosses result in two tails and a head (in any order)?

Solution: In the first case there are 8 equally likely outcomes, and our event E = {TTH} is one of
them, so the probability is P (E) = 1/8. In the second case our sample space is still 8 possible
outcomes, but now our event is a set of 3 of them: E = {TTH, THT,HTT}, so P (E) = 3/8.

Question: What is the probability that a random binary string of length 10 contains exactly 2 ones?

Solution: There are C(10, 2) = 45) ways to choose the positions of the two ones, and there are
210 = 1024 binary strings of length 10, so P (E) = 45/1024.

23

Events are collections of outcomes and may overlap or be disjoint. In addition, events may be correlated
in the sense that the knowledge that E1 has occurred may alter (increase or decrease) the probability that
E2 has occurred. Draw Venn diagrams to scale to make this tangible.

If the knowledge that E1 has occurred has no effect on the probability that E2 occurs, we say that E1

and E2 are independent. This can be expressed as saying that P (E2) is the same whether we consider the
original sample space, S, or the restricted sample space E1. In symbols, E1 and E2 are independent means:

|E2|
|S|

= P (E2) =
P (E1 ∩ E2)
P (E1)

⇒ P (E1)P (E2) = P (E1 ∩ E2).

Notice that two events that have an empty intersection (mutually exclusive) are strongly dependent,
unless one of them has probability zero.

Question: Are the events that three coin tosses result in an even number of heads, and three coin tosses
result in an even number of tails dependent or independent?

Solution: Three coin tosses with an even number of heads is E1 = {TTT, THH,HTH,HHT}, and
three coin tosses with an even number of tails is E2 = {HHH,HTT, THT, TTH}. The inter-
section of E1 and E2 is empty, so P (E1 ∩ E2) = 0 which is not equal to P (E1)P (E2) = 1/4.
Knowledge that an even number of tails occurred makes it unlikely (impossible, in fact) that an
even number of heads occurred.

Question: Are the events that three coin tosses result in an even number of heads and three coin tosses
start with a tail independent?

Solution: Three coin tosses beginning with a tail is E1 = {TTT, TTH, THT, THH}, and three
coin tosses with an even number of heads is E2 = {TTT, THH,HTH,HHT}. E1 ∩ E2 =
{TTT, THH}, so P (E1)P (E2) = 1/4 = P (E1∩E2), and these events are independent. Knowledge
that an even number of heads occurred doesn’t change the probability that the three tosses begin
with a tail.

Question: Are the events that a family with three children has at most one boy, and that a family with
three children has at least one boy and at least one girl dependent or independent?

Solution: Assume that the eight possible outcomes, BBB, BBG, BGB, BGG, GBB, GBG, GGB,
and GGG are equally likely. If E1 is the set of all three-child family outcomes with at most one
boy, then P (E1) = 4/8. If E2 is the set of all three-child family outcomes with at least one boy
and at least one girl, then P (E2) = 6/8. E1∩E2 are those family outcomes where there is exactly
one boy, so P (E1 ∩ E2) = 3/8. Since (6/8)(4/8) = 3/8, E1 and E2 are independent.
If you change the problem to two-child families, then P (E1) becomes 3/4, P (E2) becomes 2/4,
and P (E1 ∩ E2) becomes 2/4, which is different from 3/8 (P (E1)P (E2)), so the events aren’t
independent.

Knowledge that one event occurs can alter the probability of another event occurring. Since events are
sets of outcomes, knowing that an outcome is contained in E2 may affect the likelihood that it is contained
in E1, since now our sample space changes from all possible outcomes to just E2. We call this conditional
probability the probability of E1 given E2, written P (E1|E2), and it can be computed (assuming that
P (E2) > 0:

P (E1|E2) =
|E1 ∩ E2|
|E2|

=
(1/|S|)|E1 ∩ E2|

(1/|S|)|E2|
=
P (E1 ∩ E2)
P (E2)

.

Notice that E1 and E2 are independent is equivalent to P (E1) = P (E1|E2).

Question: What is the conditional probability that a two-child family has two boys, given that they have
at least one boy?

24

Solution: There are four outcomes in the sample space, and only one of them has two boys, so
P (E1) = 1/4 = P (E1 ∩ E2) (every family that has two boys has at least one boy). Three of the
outcomes have at least one boy, so P (E2) = 3/4. So P (E1|E2) = (1/4)/(3/4) = 1/3. So the
knowledge that there is at least one boy increases the probibility that there are 2 boys.

Monty Hall problem: With equal probability there’s a prize behind one of three doors, the other
two doors have something worthless. You tentatively pick a door (let’s call it door 1). Monty Hall
(cheesey game show host) reveals something worthless behind door 2 (he always reveals something
behind one of the doors you didn’t pick). Should you switch to door 3 or not?
Solution: A hurried analysis makes it looks as though the chances that the prize are behind

door 1 or 3 are 50:50. However, the fact that Monty Hall always reveals something worthless
behind a door you didn’t pick changes the problem substantially, and your chances of find
the prize are 2/3 if you switch to door 3.
One way of thinking of this is that rather then tentatively picking door 1, you are deciding
to pick one of doors 2 or 3 (if you decide to switch). Initially the probability that the prize is
behind one of those doors is 2/3, and when Monty reveals the junk, if the prizes was behind
one of those two doors, you’ve got it by picking the other.
To make the calculation precise, call the event that the prize is behind door 1 D1, similarly
the event that the prize is behind door 2 is D2, and the event that the prize is behind door 3
is D3 — all of these have probability 1/3. The event that Monty shows door 1 (once you’ve
tentatively chosen door 1) is S1, the event that Monty shows door 2 is S2, and the event that
Monty shows door 3 is S3.
Notice that D1 = {D1 ∩ S2, D1 ∩ S3}, and D3 = {D3 ∩ S2}. Turning things around, S2 =
{D1 ∩ S2, D3 ∩ S2}. So, P (S2) = 1/3 + 1/6 = 1/2. P (D1 ∩ S2) = 1/6, so P (D1|S2) = 1/3.
However, P (D3 ∩ S2) = P (D3) = 1/3, so P (D3|S2) = 2/3, and you should choose door 3!

Week 14
Recurrences

Some counting problems don’t yield to the techniques we’ve looked at so far. Some of these unyielding
problems end up having a structure where the nth element of a sequence is related to elements 0, . . . , n− 1.
For example

Rabbit breeding: Suppose you want to predict the number of breeding pairs of rabbits will be produced
by an initial pair of rabbits. To simplify your calculations, you make the following assumptions

1. Once a pair of rabbits exists, they never die (they are immortal).
2. Each breeding pair of rabbits produces exactly one more breeding pair weekly, except that a

breeding pair needs two week (to mature) before they produce their very first pair of offspring.

You take the following approach. You start allowing the rabbits to breed on a Friday, and you tally
the results on subsequent Fridays. So, on Friday 0 you have F0 = 0 breeding pairs, on Friday 1 you
have F1 = 1 breeding pair. On Friday 2 you still have the breeding pair from F1 (these rabbits never
die), but no new breeding pairs are born (since on F0 there were none), so F2 = 1. On Friday 3, you
still have the old breeding pair from F2, but in addition the breeding pair that existed on F1 produces
a pair of offspring, so F3 = 2. You write down a general formula:

Fn =


0 n == 0
1 n == 1
Fn−2 + Fn−1 otherwise

Notice that the formula for Fn uses values from F0, . . . , Fn−1, except in the initial cases where n = 0
or n = 1. This is called a recurrence relation, and (in this case) you can calculate Fn for any n with
O(n) steps.

25

Tower of Hanoi: A puzzle from the 1800s asked you to move a stack of n rings (stacked in decreasing order
of width) one-at-a-time from one of three rings to another. You were never allowed to place a wider
ring on a narrower one.

One (of many) approaches reasoned that before moving the largest of the n rings to their destination,
you would need to move the smaller n − 1 rings to an intermediate location, then move the largest
ring to its destination, and then move the smaller n− 1 rings from their intermediate location to the
destination. In addition, it was clear that it took 1 move to get a stack of 1 rings from its initial
location to its destination. So, if you call the number of moves required to move n rings Hn, this
formula says you’ll need

Hn =

{
1 n == 1
2Hn−1 + 1 otherwise

. . . to move a stack of n rings.

Counting binary strings: How many binary strings of length n are there that have never have two adja-
cent zeros? At first this sounds like something from Chapter 4, except that it asks for the number for
a general n (not some particular n like 3 or 6). It doesn’t seem to yield to the counting techniques of
combinations or permutations, but it does have a recursive structure.

If you consider the empty string to be one string, then there is 1 string of length zero (””) with no
repeated zeros. There are two strings of length 1 without repeated zeros: 1 and 0. Now call the
number of binary strings without adjacent zeros of length n BSWAZn, and consider n > 1. These
can be broken into two classes: those that end with a 1 and those that end with a 0. Those that
end with a 1 can be formed by simply adding a 1 to every valid binary string of length n − 1 that
doesn’t have adjacent 0s. Those that end with a zero must end with 10 in order to qualify, so wwe
can form them by adding 10 to all the valid binary strings of length n− 2. Counting these up we get
BSWAZn = BSWAZn−2 +BSWAZn− 1:

BSWAZn =


1 n = 0
2 n = 1
BSWAZn−2 +BSWAZn−1 otherwise

This should look familiar.

How many parenthesizations?: Consider matrix multiplication, which is associative but not commuta-
tive. So (if they have the right dimensions) the matrix product M0M1M2 can be multiplied in the
following ways: M0(M1M2) or (M1M1)M2. If there were four matrices, we’d have to consider 5 possi-
ble groupings. If we call the number of ways to group n+ 1 matrices Gn, then G0 = G1 = 1, and for
larger n, we make the “top-level” division into two products between two matrices, then

Gn = G0Gn−1 +G1Gn−2 + · · ·+Gn−1G0

These numbers grow quickly with n and the sequence {Gn} is called the Catalan numbers, (which
solves a number of counting problems).

Notice that our four examples give us a procedure for finding the nth element of a sequence, but not
a closed form (a function or expression that does it in one step). We can reduce Hn to a closed form by
repeatedly unwinding it until we see something that we recognize (Hn = 2n−1). The Catalan numbers yield
to a high-powered tool called generating functions before they take on a (nearly familiar) closed form. The
rabbits and binary strings yield to an approach that solves an entire class of problems.

Solving recurrence relations (closed form)

The recurrence relation for the number of moves in the Tower of Hanoi puzzle, Hn = 2Hn−1 + 1 yields to
an informal “unwinding” argument, so that Hn = 2n − 1, for n = 1, 2, 3, If the “hand-waving” portion

26

of the unwinding seems unconventional, use a straight-forward proof by induction with the base case n = 1
being just a move of a single ring, and the induction step requiring you to show that if Hn−1 = 2n−1 + 1,
then Hn = 2n + 1. This is a closed form, basically an expression for Hn that takes a fixed number of steps
using some familiar function.

Another recurrence relation we looked at for the number of ways to group (parenthesize) n+ 1 matrices
yielded the recurrence relation

Gn = G0Gn−1 +G1Gn−2 + · · ·+Gn−1G0.

The sequence {Gn}, with G0 = G1 = 1 is called the Catalan numbers, and it yields to an approach using
generating functions. The closed-form solution, Gn = C(2n, n)/(n+ 1) suggests some sort of combinatorial
argument, but it’s not obvious how to get it using combinatorial methods.

The third pattern is suggested by the Fibonacci sequence, {Fn} (rabbits), and the bit strings without
adjacent zeros, {Bn}. Although Bn looks as though it may have a combinatoric solution, it doesn’t seem to
save time compared to adding up terms from B0 to Bn. Both Bn and Fn have the form:

an = an−1 + an−2

. . . plus some initial conditions to establish a0 and a1. For different choices of initial conditions you get
different sequences, and (a short induction proof will establish this rigorously) once you’ve specified a0 and
a1 you have uniquely specified the entire sequence {an}. This is called a linear homogeneous recurrence
relation of degree 2: linear because an is a sum of multiples of an−1 and an−2 each with exponent 1,
homogeneous because only multiples of the ai are on the right-hand side, and constant coefficients because
the ai are multiplied by constants that don’t depend on n, degree 2 since the an depends on previous terms
down to an−2. There is a general technique for solving (finding closed forms) for this sort of recurrence,
which may remind you of solutions to differential equations.

First notice that if you have two solutions to a recurrence relation, linear combinations of those two
solutions are also a solution. This means that if {sn} satisfies sn = sn−1 + sn−2 and {tn} satisfies tn =
tn−1 + tn−2, then

fn = asn + btn = asn−1 + btn−1 + asn−2 + bsn−2 = fn−1 + fn−2,

. . . is also a solution. Once some solutions, you can generate a whole family of solutions in this way. Each
particular solution differs by its initial conditions, the value of a0 and a1.

After a bit of experimentation with Fn and Bn it seems plausible that the terms of each sequence behave
like powers of some base that lies between 1 and 2. In the case of Bn, the first few terms are 1, 2, 3, 5, 8, 13, . . .
and it seems as though 1.5an−1 ≤ an ≤ 2an−1. Manipulating this guess a bit you can see that if the solution
to an = an−1 + an−2 were of the form rn = rn−1 + rn−2, a base r0 that solved this would have to be a
solution to rn − rn−1 − rn−2 = 0, and dividing this by rn−2 you get a quadratic equation: r2 − r − 1 = 0.
This equation has two roots:

1±
√

5
2

.

Call these two roots r1 and r2. You can verify that each of them satisfy the recurrence relation an =
an−1 + an−2 if you set an = rni , for i = 1, 2. Any linear combination ar1 + br2 is also a solution, so now we
want to find the right values for a and b that satisfy initial conditions for, say, {Fn} — F0 = 0 and F1 = 1,
and satisfying

Fn = a
1 +
√

5
2

+ b
1−
√

5
2

.

This means that F0 = a + b = 0, so b = −a, and F1 = 1 = ar1 − ar2 = 1, or a = 1/(r1 − r2) = 1/
√

5, and
b = −1/

√
5. This gives a closed form for Fn:

Fn =
1√
5

(
1 +
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
.

27

This approach works so long as r1 6= r2, so that you can divide by their difference. Once you’ve settled what
a and b are, there is only one sequence that satisfies both the initial conditions and the general recurrence
relation, so this must be the expression for Fn.

The same approach works for Bn, only now the initial conditions are different so you need to solve:

ar0
1 + br0

2 = 1 =⇒ b = 1− a

ar1 + br2 = 2 =⇒ a =
2− r2

r1 − r2
=

3 +
√

5
2
√

5

b =
√

5− 3
2
√

5
,

Bn =
3 +
√

5
2
√

5

(
1 +
√

5
2

)n
− 3−

√
5

2
√

5

(
1−
√

5
2

)n
.

A completely different approach to calculating Bn yields

Bn = C(n+ 1, 0) + C(n, 1) + C(n− 1, 2) + · · ·+ C(n/2, n/2).

. . . so now you have a relationship between binomial coefficients and the fibonacci sequence.

General solution

The approach for solving Fn and Bn work for an arbitrary recurrence relation an = c1an−1 + c2an−2 with
a0 = k0 and a1 = k1. If the characteristic equation:

r2 − c1r − c2 = 0

. . . has two distinct roots r1 and r2, then these are each solutions to the recurrence an = c1an−1 + c2an−2,
as is any linear combination αr1 + βr2. If you can find α and β that satisfy the initial conditions k0 and k1,
then this is the unique solution to the recurrence relation.

k0 = a0 = αr0
1 + βr0

2 =⇒ β = k0 − α

k1 = a1 = αr1 + (k0 − α)r2 =⇒ α =
k1 − k0r2

r1 − r2

β =
k0r1 − k0r2 − k1 + k0r2

r1 − r2
=
k0r1 − k1

r1 − r2
.

So long as r1 6= r2 this solution exists and gives the unique solution to the recurrence relation. At no point
in the argument do we depend on r1, r2, α, β being real numbers, so the solution is valid even if some of these
are complex numbers.

Example: Suppose you have a 2×n grid to completely cover with tiles. You’ve got two types of tiles: 1×2
tiles and 2× 2 tiles. For a given n in how many ways can you tile a 2× n grid?

Solution: Call the number of ways you can tile a 2 × n grid Tn. T0 = 1 (use exactly zero tiles. . .),
and T1 = 1 (use a single 1 × 2 tile). For n > 1 the nth column is filled by either one 1 × 2 tile,
the tips of two 1× 2 tiles, or the end of one 2× 2 tiles. This suggests the recurrence relation

Tn =


1 n = 0
1 n = 1
Tn−1 + 2Tn−2 otherwise

The characteristic equation is r2 − r − 2, which has roots r1 = 2, and r2 = −1, so the family
of solutions is αrn1 + βrn2 . Solving for initial conditions T0 = 1 and T1 = 1 gives α = 2/3 and
β = 1/3, so the general solution is an = (2/3)2n + (1/3)(−1)n = (1/3)(2n+1 + (−1)n.

28

This solution depends on dividing by r1 − r2, so the characteristic equation must have distinct roots.
What happens if the characteristic equation has a single root of multiplicity 2? In other words, you’ve got
a recurrence relation an = c1an−1 + c2an−2, and the corresponding characteristic equation r2 − c1r− c2 = 0
has a single root r0. Certainly multiples of r0 will also be solutions to the recurrence of the form {arn0 },
using the same argument as before. However these won’t generate enough solutions to be able to solve for
every possible pair of initial conditions. It turns out (educated guess time again. . .) that a second solution
is provided by {nrn0 }.

To see that this is true, re-write the characteristic equation as 0 = r2 − c1r − c2 = (r − r0)2, so that
r2− 2r0r+ r2

0 = r2− c1r− c2. By comparing coefficients, you can see that c1 = 2r0 and c2 = −r2
0. You want

to verify that nrn0 = c1(n− 1)rn−1
0 + c2(n− 2)rn−2:

c1(n− 1)rn−1
0 + c2(n− 2)rn−2

0 = (2r0)(n− 1)rn−1
0 − r2

0(n− 2)rn−2
0

= 2(n− 1)rn0 − (n− 2)rn0
= nrn0 .

By the same argument as before an = αrn0 + βnrn0 provides a family of solutions. For a given pair of initial
conditions a0 = k0, and a1 = k1, if you can solve for α and β, you can exhibit the unique solution:

a0 = k0 = α

a1 = k1 = k0r0 + βr0 =⇒ β =
k1 − k0r0

r0
.

This solution assumes that r0 6= 0, which is certainly true so long as c2 6= 0 (true, since our recurrence has
degree 2).

Example: Solve the recurrence an = 4(an−1 − an−2) given initial conditions a0 = 1 and a1 = 3.

Solution: The corresponding characteristic equation is r2 − 4r + 4 = 0. This has a single root, 2, so
the general solution is an = α2n +βn2n for some α and β. With the initial conditions a0 = 1 and
a1 = 3, we solve for α = 1 and β = 1/2, so the formula is an = 2n + n2n−1.

29

