
CSC104, Assignment 3, Winter 2006
Sample solution

Danny Heap

Finger exercises

1. Create directory A3, make it your working directory, and create a �le called journalA3 in it. This will
be where your record the joys and frustrations of working through this assignment, plus how you go
about solving (or not) the exercises, and observations or investigations that occur to you on the way.

While still in directory A3, start up DrScheme, by typing drscheme. Once you have a DrScheme
window, you can set a comfortable font under Edit/preferences, and set the level of the Scheme
language to \Intermediate student with lambda" by going to the Language/Choose Language menu,
and looking under \How to Design Programs." The idea of selecting a language level is to make enough
of Scheme available to allow you to do some interesting things, but to turn o� some other features that
might get you into trouble. Of course, you are free to set the language level to whatever you decide,
so that you can get into as much, or little, trouble as you choose.

While under the Language menu, switch to the Teachpack submenu, and select htdp. You will see a
number of entries with an \.ss" extension, and you should double-click draw.ss. This will allow your to
use some drawing commands in your programs. Although I'll mention the necessary commands from
draw.ss, if you're curious you can look under Help/Help Desk/Teachpacks.

Solution: I set up direction A3 and started journalA3 similarly to the �rst two assignments. I opened
up Drscheme, and although I was able to choose the Intermediate Student with Lambda level,
I couldn't seem to get the draw.ss teachpack installed. After fussing with this forever, I tried
another computer, which seem to have a more compliant mouse, and I was able to put in the
teachpack.
The help listed on the teachpacks seemed terse and uninformative.

2. The bottom part of your DrScheme is an interactions pane, where you can experiment with Scheme
expressions. Arithmetic uses some familiar operators such as + - * and / together with a couple of
probably-unfamiliar features: expressions are wrapped in parentheses, and operators come before the
things they operate on (operands). Try typing the following in the DrScheme interactions pane, and
record your experience and explanations or conjectures in journalA3 (if you get a message about the
interactions pane not being synchronized with the de�nitions pane, click the run button and continue):

> (+ 2 3)

> (+ 1 2 3 4)

> (* 2 3)

> (* 2 3 4)

1



> (/ 3 5)

> (* (/ 3 5) (/ 5 3))

Solution: Scheme appears to perform the usual arithmetic operations in an unusual way: the operator
comes before the things it operates on. This seems pretty awkward, except in the case of (+ 1
2 3 4) it seems to save keystrokes (that adds up all the numbers that follow the \+" sign). The
general rule seems to be: (operator number1 number2) means number1 operator number2. The
order is important with subtraction and division: (/ 3 5) means 3 divided by 5, not 5 divided by
3. The parentheses tell me the scope of things to operate on, and I can embed subexpressions,
for example: (* (/ 3 5) (/ 5 3)) means to �rst evaluate the inner expressions (so 3/5 and 5/3),
and then multiply them (producing 1). The division operator seems to produce an exact oating
point result. For example, (/ 5 3) produces a repeating decimal, and indicates which portion
repeats.

3. As well as numbers, Scheme has lists. Various types of objects (including lists themselves) can be
members of lists, but numbers are probably the most concrete sort of object to begin with. Here's how
you can create a list of the �rst �ve positive integers:

(list 1 2 3 4 5)

This is exactly the same as:

’(1 2 3 4 5)

Scheme provides some tools for manipulating lists. Try out, and then explain, the following:

(first (list 1 2 3 4 5))

(second (list 1 2 3 4 5))

(eighth (list 1 2 3 4 5))

(rest (list 1 2 3 4 5))

(rest (list 6 7 8 9 10))

(reverse (list 1 2 3 4 5))

(reverse (reverse (list 1 2 3 4 5)))

(length (list 1 2 3 4 5))

(append (list 1 2 3 4) (list 5 6 7 8))

Solution: The word list seems to have a special meaning to Scheme, so that if it is combined with
a sequence of numbers I can use other special words such as �rst, second, rest, reverse on them.
It's not clear to me why I'd use it instead of the '(1 2 3 4) version, but perhaps that will come
later. The word �rst extracts the �rst element of a list, second extracts the second, and so on.
You have a problem if you extract the eighth element of a list that doesn't have eight elements,
so that command generated an error. The word rest returns a list with the �rst element removed
(the rest of the list, I guess). The word reverse does what it says: it reverses a list, and if you
reverse a list twice, you get the original list back. length gives you the length of a list, and append
pastes two lists together. I tried out (length (list)), and got \0", so that list must be empty. I
also found that (append '() (list 1 2 3)) gives me (list 1 2 3), so you leave a list unchanged by
appending an empty list. I tried out (eleventh 1 2 3 4 5 6 7 8 9 10 11), but the word eleventh
doesn't seem to be familiar to Scheme. How do words get their special meaning in Scheme?

2



4. Scheme can tell true from false, combine them with and and or. Try out the following, and record
your observations and explanations:

> (> 3 5)

> (< 3 5)

> (positive? 5)

> (positive? -3)

> (and (< 3 5) (positive? -3))

> (or (< 3 5) (positive? -3))

Solution: The \operator before the things it operates on" pattern continues with Scheme. If I want
to test whether 3 > 5, I put the > at the beginning of my Scheme expression, and I get false for
my trouble (which is, so to speak, true). I can also test whether 3 is less than 5 by using the
< operator instead. Scheme recognizes positive? as a question, and gives a true/false answer,
depending on whether the number following it is positive or not.
The ordinary words and and or have special meaning to Scheme. If I have and followed by a
couple of things, one of which is false, I get false. I tried following it with two true things, and it
produces true. Two false things produce false again. Some the and of two things is true exactly
when they both are true. I tried a similar set of tests on the special word or, and it seems as
though the or of two things is true unless they are both false.
By the way, the \things" in the previous paragraph have to be expressions that can only be true
or false. I tried plugging in numbers, and Scheme complained.

Scheme can choose di�erent actions, based on whether some expression is true or false, using the special
keywords if and cond. Experiment with the following until you can explain it (note that strings are
denoted similarly to what you've seen in Python):

> (if (> 5 3) "five is more than three" "five is not more than three")

> (if (< 5 3) "five is less than three" "three is not less than three")

> (cond ((< 5 3) "five is less than three")

((> 5 3) "five is greater than three")

(else "five and three are equal"))

Solution: The general pattern here seems to be (if (true-or-false-thing) do-this do-that). When the
true-or-false-thing is true, we do-this, otherwise we do-that. So far as Scheme is concerned, strings
such as \�ve is more than three" are just objects to produce, depending on whether the true-or-
false-thing is true or false. I tried writing nonsense for both strings, and Scheme would produce
the �rst one when the true-or-false-things is true, and the second one otherwise.
The next pattern seems to be (cond (((T/F?) do1) ((T/F?) do2) ...)), where if one of the (T/F?)
is true, you do the corresponding do#. I wonder what happens if more than one of the T/F? is
true? I tried this out, and it just returns the do# corresponding to the �rst thing that's true.

The special keyword de�ne binds the �rst expression that follows it to the second expression that
follows it, so you can use the �rst expression as a name to call the second. Try out the following
example, and chat with a TA or an instructor until you can record some sort of explanation:

> (define (maximum n1 n2)

(if (> n1 n2) n1

n2))

3



> (maximum 3 5)

> (maximum 5 3)

Solution: It seemed odd to be de�ning something as obvious as maximum, so I tried (maximum 2
3), and Scheme scolded me that maximum wasn't yet de�ned.
I tried typing the given example, and suddenly maximum is de�ned: (maximum 2 3) produces 3,
as does (maximum 3 2), so the de�nition I created actually achieved something. I tried to trace
out how it works. When a user types (maximum 3 2), the de�nition substitutes 3 for n1 and 2
for n2, and then checks whether n1 (or 3) is greater than n2 (or 2). This is true, so n1 (or 3) is
produced. Doing things the other way around, if the user types (maximum 2 3), the de�nition
substitutes 2 for n1 and 3 for n2, then checks whether n1 is greater than n2 (now this is false), so
it produces n2 (or 3). This worked so well that I tried (maximum 3 4 5), but Scheme scolded me
that I had provided 3 arguments instead of 2 (and I wasn't feeling particularly argumentative).
It looks as though I can break things down and trace through why they work.

5. The semicolon tells Scheme to ignore the remainder of a line it is on, and is thus useful for comments.
In the next few exercises I will provide comments that describe the function that you are to try to
create. Included in the comments are examples of how the function behaves.

Your �rst task is to de�ne the function lcycle, corresponding to the passage beginning with semicolons
below. In your de�nitions pane, type a Scheme expression that de�nes lcycle. Hint: you will need to
dream up a name for the parameter that refers to your list, just as I had to dream up n1 and n2 in
the last exercise. You can't use the parameter name list, because Scheme already uses that for other
things.

You should read the comments very closely, plus refer back to the last few exercises, to guide you in
writing lcycle. The comment on the �rst line indicates that lcycle takes a list as input, and produces a
list as output. You should type your de�nition in the top (de�nition) pane (include the comments), and
then test it by clicking the run button, and trying the new command out in the bottom (interactions)
pane of DrScheme. Record your observations and explanations in journalA3. When you believe you
have it working, save your �le as sneeze.scm by using the File/Save De�nitions As menu.

;; lcycle : list -> list

;; To produce a version of the list with the first element moved to the end.

;; example 1: (lcycle ’(1 2)) produces ’(2 1)

;; example 2: (lcycle ’(1)) produces ’(1)

;; example 3: (lcycle ’(1 2 3)) produces ’(2 3 1)

Solution: I began by imitating the last exercise: (de�ne (lcycle n1) ...). I actually tried running this,
(lcycle '(1 2)), but Scheme complained that ... is an unde�ned identi�er. So, assuming that the
user types in something like (lcycle '(1 2)), the list they give me will be attached to n1, so I want
to take the �rst element and append it to the end. I tried replacing my ... with (append (rest n1)
(�rst n1)), but that produced an error, since (�rst n1) isn't a list. I �xed that up as (list (�rst
n1)) (a 1-element list), so I got a working version: (de�ne (lcycle n1) (append (rest n1) (list (�rst
n1)))), and it worked on all the given examples. I tried it on an empty list, and it broke (because
there is no �rst and no rest), so I guess I can use some sort of \if" clause to �x that, but perhaps
I'll come back to that later.

6. Keep working in the de�nitions pane (and saving your work occasionally by clicking the Save button).
Don't erase or replace your de�nition of lcycle. There is another passage of comments below describing

4



a similar function rcycle. You could create rcycle from scratch, or perhaps think of how to create it
using lcycle and reverse. Record your observations and explanations in journalA3.

;; rcycle : list -> list

;; To produce a version of the list with the last element moved to the beginning.

;; example 1: (rcycle ’(1)) produces ’(1)

;; example 2: (rcycle ’(1 2)) produces ’(2 1)

;; example 3: (rcycle ’(1 2 3)) produces ’(3 1 2)

Solution: This looks so similar to lcycle, that I think it should almost write itself | it's the same
operations, just working from the other end of the list. I �rst started cutting and pasting things
from lcycle, and then I realized that I could use reverse twice: (de�ne (rcycle n1) (reverse (lcycle
(reverse n1)))). I think the name n1 isn't very explanatory, I should use list (no, that doesn't
work, Scheme complains), or perhaps lst (thanks Sheila). Once again, the given examples (and
longer lists) all worked as expected, but an empty list is a problem.

7. The functions you're working on are components of a program that will simulate and display the
progress of a respiratory infection through a population. We use a positive number to indicate an
individual in our population who is infected. Your next job is to de�ne sick-left to decide whether
the left-most number in a triple (list of three) is positive. Keep working in the de�nitions pane
where your previous two de�nitions are, test your work by clicking Run and then trying things out
in the interactions pane, and save your work by clicking the Save button. As always, observations,
explanations, and conjectures go in journalA3

;; sick-left : list -> Whether left-most number of list is positive.

;; To decide whether the left-most number of list is positive.

;; example 1: (sick-left ’(5 3 1)) produces true.

;; example 2: (sick-left ’(-5 3 1)) produces false.

Solution: I know how all the parts work, so I can paste them together easily. I extract the �rst
element using �rst, and then �gure out whether it's positive using positive?. So that's (de�ne
(sick-left lst) (positive? (�rst lst))). It works on all the given examples, and the procedure doesn't
even make sense on an empty list (so I didn't try it).

8. Now you should de�ne the similar function sick-right. Once again, you could de�ne this from scratch,
or you could use sick-left and reverse. Record your observations and explanations. Save your de�nitions
by clicking the Save button, and record the process of solving the exercise in journalA3.

;; sick-right : list -> Whether the right-most number of list is positive.

;; To decide whether the right-most number of list is positive.

;; example 1: (sick-right ’(1 3 5)) produces true.

;; example 2: (sick-right ’(1 -3 -5)) produces false.

Solution: I can use the reverse trick from rcycle, since the right-most member of a list is positive
exactly when the left-most member of that list reversed is positive: (de�ne (sick-right lst) (sick-left
(reverse lst))). Once again, I tried it out on the given examples, and it checks out.

9. Before attempting the last (tenth) exercise, you need to understand a subtle, useful, and beautiful
technique called recursion. I will discuss this in class, but here is an example you should experiment
with until you can record an explanation.

5



In the open de�nitions pane, type the de�nition of GCD below, followed by the given example. Then
click the Step button, and then (again) the Step> button on the Stepper window that pops up.
You can step backwards and forwards through the recursive evaluation of (GCD 5 35). The strange
identi�er lambda is a placeholder for our function, GCD, at each step.

It may help your thinking to accept (without proof) the following mathematical facts: Fact 1: The
GCD of two positive integers n1 and n2 is the same as the GCD of n1 and the remainder of n2 after
dividing by n1. Fact 2: The GCD of any non-negative integer and zero is the given non-negative
integer.

;; GCD : number number -> number

;; To find the Greatest Common Denominator (GCD) of two non-negative whole numbers.

;; example 1: (GCD 5 7) produces 1.

;; example 2: (GCD 15 35) produces 5.

(define (GCD n1 n2)

(if (zero? n2) n1

(GCD n2 (remainder n1 n2))))

(GCD 15 35)

Solution: Once I got the de�nition typed, and started up the debugger, I felt a bit overwhelmed by
information. I eventually got used to the pattern: the code on the left-hand side is highlighted
in green, and it becomes (after Scheme gets through with it), the code highlighted in purple on
the right-hand side. The lambda keyword is strange, but I mentally substituted \GCD", and it
simply repeated the de�nition I had typed.
To begin with, n1 was replaced by 15 and n2 was replaced by 35 in the de�nition. Then (zero?
n2) was replaced by false (since 35 is not zero), and in the next step we were on the second option
of the if statement. This called GCD with values n2 (or 35) and (remainder n1 n2) (or (remainder
15 35), which is 15). There doesn't seem to be much progress being made here. However, after
stepping a bit more, we have an expression to evaluate (GCD 15 5), so the numbers appear to be
getting smaller. Stepping some more yields (GCD 5 0), and that's the one my de�nition knows
how to handle, it returns 5.
I tried some other numbers, and I can give an approximate explanation. If the second number is
0, the GCD is the �rst number. Otherwise, we take the remainder after division by the second
number as the new second number, and put the second number in the �rst numbers place, and call
GCD again. This process of repeatedly taking remainders will surely reduce the second number
to 0 eventually (I can't prove this, but it seems true), so a result will be produced. And the given
fact says that this is the same GCD as we're looking for in the �rst place.

10. Please feel free to ask for help/hints from the TAs and instructors on this exercise, creating a de�nition
for the function make-list. Keep working in the same de�nitions pane as your previous de�nitions,
saving your work occasionally by clicking the Save button. Observations, conjectures, and explanations
go in journalA3.

The idea is to create a function that produces lists with n copies of some object. The natural way to
carry out repetitive tasks in Scheme is with recursion, the technique from the previous exercise. The
key idea in writing this short de�nition is in the following paragraph:

If n is less than 1, produce an empty list. Otherwise append a list containing a single copy of the
object to a list of n� 1 copies of the object.

6



You might want to re-read the above two sentences a few times as you work on writing the de�nition
below. I believe it almost spells out the code you have to write to create the function, but it takes a
lot of staring to get used to recursion.

;; make-list : number object -> list

;; To produce a list consisting of number copies of object.

;; example 0: (make-list 0 5) produces ’()

;; example 1: (make-list 3 5) produces ’(5 5 5)

Solution: This took a few passes for me. I imitated the previous exercise, since I know what to do
for the shortest possible output, a list of zero copies: (de�ne (make-list n1 thng) (if (zero? n1) '()
...)). Again, I'll need to be a bit more concrete than the ... I need to create a list of n1 copies of
thng by creating a smaller list (solving a smaller problem...). Okay, suppose I could create a list
of n1-1 copies of thng, then I could simply add a list with 1 copy, so I replace ... with (append
(list thng) ...). Now I'm stuck on how to make a list of n-1 copies of thng | it doesn't seem as
though I've made any progress. I ask the Prof., and he says something unhelpful about using
recursion now... as if I could just type in (make-list (- n1 1) thng) at this point! Just to make
it clear how unhelpful he's been, I do type that in and try it out ... it for some weird reason it
works.
I trace out a few small with the stepper, and then with paper and pencil, and it becomes clear
that it should work. Each time Scheme encounters (make-list (- n1 1) thng) the value of (- n1 1)
gets smaller, so eventually the case where we're making 0 copies is reached, and everything works
out. Just for the heck of it I changed the recursive call to (make-list n1 thng) and . . . I'll get back
to you, it doesn't seem to stop.

Sneeze and sensibility

Keep DrScheme open to the de�nitions pane sneeze.scm, which has the de�nitions you created, as you read
the next few paragraphs.

Every winter respiratory infections sweep through our population, carried on a sneeze. Depending on
how strong your resistance is, your neighbour's sneeze today will be your sneeze tomorrow.

I have built a simpli�ed model of a sneeze epidemic. The population is represented as a list of zeros
(representing healthy individuals) with a single 1 (an infected individual). As each day passes, a healthy
individual with an infected individual neighbouring them (to the right or left) will become infected if their
resistance is less than the virulence of the infection. Once infected, they remain sick (and infectious) for a
number of days (which I call duration), at which point they recover and become immune for a number of
days (which I call immunity).

Depending on the value of virulence (a number between 0 and 100), immunity, and duration, the course
of the epidemic will be di�erent. For each individual, resistance is randomly chosen, each day, to be a
number between 0 and 100. If a person has a sick neighbour, and their resistance is less than virulence, they
become sick.

Open a separate terminal where you can copy ~heap/pub/epidemic.scm to your current (A3) directory.
In DrScheme, open epidemic.scm using the File/New menu. You will now have one de�nitions pane for the
de�nitions you created, and saved in sneeze.scm, and another de�nitions pane with epidemic.scm. You will
need to set the language level to Advanced Student in the Language/How to Design Programs menu, in
order for some of the commands I have put in epidemic.scm to be recognized.

7



In epidemic.scm, hunt for the comments (the passages beginning with semicolons) that correspond to
each of the de�nitions you created. Cut-and-paste (or carefully retype) your de�nitions immediately below
those passages | no semicolons in front of your de�nitions, please!. When you're done, click Run.

If you complete the Scheme code correctly, you will be prompted for values of virulence, duration,
immunity, and days. Try starting with 10, 15, 5, and 100, respectively. If you're successful, a two-dimensional
simulation of the sneeze epidemic runs each time you click the Run button. You will get di�erent simulations
if you change the values for virulence, duration, immunity, or days. Record your observations and conjectures
in journalA3.

Solution: Cutting and pasting is messy, but eventually I got the code transferred, hit the \Run" button,
and immediately got some errors. I'd forgotten to change the language level to Advanced, so I �xed that
and was prompted for \virulence", \duration", \immunity", and \days". The creepy green epidemic
�lled my screen.

I played with the same numbers for a while, and though I got di�erent patterns, I usually got an
epidemic that died out after spreading for a while. I tried increasing the virulence to 20 (the epidemic
almost always continued for 100 days and spread to other individuals quickly). I tried increasing the
duration to 30 days, and the epidemic almost reached 100 days, but was \skinnier" | it didn't branch
out to new individuals as quickly as when I increased the virulence.

So far, this seems like a plausible simulation of a disease epidemic: if it's really virulent, it spreads
very quickly from individual to individual. A less virulent but long-lasting disease spreads, but more
slowly. The end e�ect is the same in both cases: lots of sick people. I also tried reducing the immunity
period to zero, and the disease would re-infect an individual occasionally after just 1 day (nasty).

What to submit

Please submit the following �les:

� journalA3

� sneeze.scm

8


