
CSC104, Assignment 3, Winter 2006
Due: Thursday March 30th, 11:59 pm

Danny Heap

This third (and last) assignment of this o�ering of CSC104 will use the programming language Scheme.
Part of my motivation in using Scheme is that I expect that the structure of this language is unusual enough
to put all students (those with considerable computer experience, and those without) on an equal footing.
Scheme is widely-used as a �rst programming language for both Computer Science, and for students in the
humanities.

I'll try to provide documentation for Scheme as you need it. We'll be using a relatively friendly Scheme
environment called DrScheme (pronounced \doctor scheme"), and if you pursue its help menu you will
�nd a rather dry manual for Scheme, plus links to an online book teaching Scheme called \How to Design
Programs."

Finger exercises

1. Create directory A3, make it your working directory, and create a �le called journalA3 in it. This will
be where your record the joys and frustrations of working through this assignment, plus how you go
about solving (or not) the exercises, and observations or investigations that occur to you on the way.

While still in directory A3, start up DrScheme, by typing drscheme. Once you have a DrScheme
window, you can set a comfortable font under Edit/preferences, and set the level of the Scheme
language to \Intermediate student with lambda" by going to the Language/Choose Language menu,
and looking under \How to Design Programs." The idea of selecting a language level is to make enough
of Scheme available to allow you to do some interesting things, but to turn o� some other features that
might get you into trouble. Of course, you are free to set the language level to whatever you decide,
so that you can get into as much, or little, trouble as you choose.

While under the Language menu, switch to the Teachpack submenu, and select htdp. You will see a
number of entries with an \.ss" extension, and you should double-click draw.ss. This will allow your to
use some drawing commands in your programs. Although I'll mention the necessary commands from
draw.ss, if you're curious you can look under Help/Help Desk/Teachpacks.

2. The bottom part of your DrScheme is an interactions pane, where you can experiment with Scheme
expressions. Arithmetic uses some familiar operators such as + - * and / together with a couple of
probably-unfamiliar features: expressions are wrapped in parentheses, and operators come before the
things they operate on (operands). Try typing the following in the DrScheme interactions pane, and
record your experience and explanations or conjectures in journalA3 (if you get a message about the
interactions pane not being synchronized with the de�nitions pane, click the run button and continue):

> (+ 2 3)

1



> (+ 1 2 3 4)

> (* 2 3)

> (* 2 3 4)

> (/ 3 5)

> (* (/ 3 5) (/ 5 3))

3. As well as numbers, Scheme has lists. Various types of objects (including lists themselves) can be
members of lists, but numbers are probably the most concrete sort of object to begin with. Here's how
you can create a list of the �rst �ve positive integers:

(list 1 2 3 4 5)

This is exactly the same as:

’(1 2 3 4 5)

Scheme provides some tools for manipulating lists. Try out, and then explain, the following:

(first (list 1 2 3 4 5))

(second (list 1 2 3 4 5))

(eighth (list 1 2 3 4 5))

(rest (list 1 2 3 4 5))

(rest (list 6 7 8 9 10))

(reverse (list 1 2 3 4 5))

(reverse (reverse (list 1 2 3 4 5)))

(length (list 1 2 3 4 5))

(append (list 1 2 3 4) (list 5 6 7 8))

4. Scheme can tell true from false, combine them with and and or. Try out the following, and record
your observations and explanations:

> (> 3 5)

> (< 3 5)

> (positive? 5)

> (positive? -3)

> (and (< 3 5) (positive? -3))

> (or (< 3 5) (positive? -3))

Scheme can choose di�erent actions, based on whether some expression is true or false, using the special
keywords if and cond. Experiment with the following until you can explain it (note that strings are
denoted similarly to what you've seen in Python):

> (if (> 5 3) "five is more than three" "five is not more than three")

> (if (< 5 3) "five is less than three" "three is not less than three")

> (cond ((< 5 3) "five is less than three")

((> 5 3) "five is greater than three")

(else "five and three are equal"))

The special keyword de�ne binds the �rst expression that follows it to the second expression that
follows it, so you can use the �rst expression as a name to call the second. Try out the following
example, and chat with a TA or an instructor until you can record some sort of explanation:

2



> (define (maximum n1 n2)

(if (> n1 n2) n1

n2))

> (maximum 3 5)

> (maximum 5 3)

5. The semicolon tells Scheme to ignore the remainder of a line it is on, and is thus useful for comments.
In the next few exercises I will provide comments that describe the function that you are to try to
create. Included in the comments are examples of how the function behaves.

Your �rst task is to de�ne the function lcycle, corresponding to the passage beginning with semicolons
below. In your de�nitions pane, type a Scheme expression that de�nes lcycle. Hint: you will need to
dream up a name for the parameter that refers to your list, just as I had to dream up n1 and n2 in
the last exercise. You can't use the parameter name list, because Scheme already uses that for other
things.

You should read the comments very closely, plus refer back to the last few exercises, to guide you in
writing lcycle. The comment on the �rst line indicates that lcycle takes a list as input, and produces a
list as output. You should type your de�nition in the top (de�nition) pane (include the comments), and
then test it by clicking the run button, and trying the new command out in the bottom (interactions)
pane of DrScheme. Record your observations and explanations in journalA3. When you believe you
have it working, save your �le as sneeze.scm by using the File/Save De�nitions As menu.

;; lcycle : list -> list

;; To produce a version of the list with the first element moved to the end.

;; example 1: (lcycle ’(1 2)) produces ’(2 1)

;; example 2: (lcycle ’(1)) produces ’(1)

;; example 3: (lcycle ’(1 2 3)) produces ’(2 3 1)

6. Keep working in the de�nitions pane (and saving your work occasionally by clicking the Save button).
Don't erase or replace your de�nition of lcycle. There is another passage of comments below describing
a similar function rcycle. You could create rcycle from scratch, or perhaps think of how to create it
using lcycle and reverse. Record your observations and explanations in journalA3.

;; rcycle : list -> list

;; To produce a version of the list with the last element moved to the beginning.

;; example 1: (rcycle ’(1)) produces ’(1)

;; example 2: (rcycle ’(1 2)) produces ’(2 1)

;; example 3: (rcycle ’(1 2 3)) produces ’(3 1 2)

7. The functions you're working on are components of a program that will simulate and display the
progress of a respiratory infection through a population. We use a positive number to indicate an
individual in our population who is infected. Your next job is to de�ne sick-left to decide whether
the left-most number in a triple (list of three) is positive. Keep working in the de�nitions pane
where your previous two de�nitions are, test your work by clicking Run and then trying things out
in the interactions pane, and save your work by clicking the Save button. As always, observations,
explanations, and conjectures go in journalA3

;; sick-left : list -> Whether left-most number of list is positive.

;; To decide whether the left-most number of list is positive.

3



;; example 1: (sick-left ’(5 3 1)) produces true.

;; example 2: (sick-left ’(-5 3 1)) produces false.

8. Now you should de�ne the similar function sick-right. Once again, you could de�ne this from scratch,
or you could use sick-left and reverse. Record your observations and explanations. Save your de�nitions
by clicking the Save button, and record the process of solving the exercise in journalA3.

;; sick-right : list -> Whether the right-most number of list is positive.

;; To decide whether the right-most number of list is positive.

;; example 1: (sick-right ’(1 3 5)) produces true.

;; example 2: (sick-right ’(1 -3 -5)) produces false.

9. Before attempting the last (tenth) exercise, you need to understand a subtle, useful, and beautiful
technique called recursion. I will discuss this in class, but here is an example you should experiment
with until you can record an explanation.

In the open de�nitions pane, type the de�nition of GCD below, followed by the given example. Then
click the Step button, and then (again) the Step> button on the Stepper window that pops up.
You can step backwards and forwards through the recursive evaluation of (GCD 5 35). The strange
identi�er lambda is a placeholder for our function, GCD, at each step.

It may help your thinking to accept (without proof) the following mathematical facts: Fact 1: The
GCD of two positive integers n1 and n2 is the same as the GCD of n1 and the remainder of n2 after
dividing by n1. Fact 2: The GCD of any non-negative integer and zero is the given non-negative
integer.

;; GCD : number number -> number

;; To find the Greatest Common Denominator (GCD) of two non-negative whole numbers.

;; example 1: (GCD 5 7) produces 1.

;; example 2: (GCD 15 35) produces 5.

(define (GCD n1 n2)

(if (zero? n2) n1

(GCD n2 (remainder n1 n2))))

(GCD 15 35)

10. Please feel free to ask for help/hints from the TAs and instructors on this exercise, creating a de�nition
for the function make-list. Keep working in the same de�nitions pane as your previous de�nitions,
saving your work occasionally by clicking the Save button. Observations, conjectures, and explanations
go in journalA3.

The idea is to create a function that produces lists with n copies of some object. The natural way to
carry out repetetive tasks in Scheme is with recursion, the technique from the previous exercise. The
key idea in writing this short de�nition is in the following paragraph:

If n is less than 1, produce an empty list. Otherwise append a list containing a single copy of the
object to a list of n� 1 copies of the object.

You might want to re-read the above two sentences a few times as you work on writing the de�nition
below. I believe it almost spells out the code you have to write to create the function, but it takes a
lot of staring to get used to recursion.

4



;; make-list : number object -> list

;; To produce a list consisting of number copies of object.

;; example 0: (make-list 0 5) produces ’()

;; example 1: (make-list 3 5) produces ’(5 5 5)

Sneeze and sensibility

Keep DrScheme open to the de�nitions pane sneeze.scm, which has the de�nitions you created, as you read
the next few paragraphs.

Every winter respiratory infections sweep through our population, carried on a sneeze. Depending on
how strong your resistance is, your neighbour's sneeze today will be your sneeze tomorrow.

I have built a simpli�ed model of a sneeze epidemic. The population is represented as a list of zeros
(representing healthy individuals) with a single 1 (an infected individual). As each day passes, a healthy
individual with an infected individual neighbouring them (to the right or left) will become infected if their
resistance is less than the virulence of the infection. Once infected, they remain sick (and infectious) for a
number of days (which I call duration), at which point they recover and become immune for a number of
days (which I call immunity).

Depending on the value of virulence (a number between 0 and 100), immunity, and duration, the course
of the epidemic will be di�erent. For each individual, resistance is randomly chosen, each day, to be a
number between 0 and 100. If a person has a sick neighbour, and their resistance is less than virulence, they
become sick.

Open a separate terminal where you can copy ~heap/pub/epidemic.scm to your current (A3) directory.
In DrScheme, open epidemic.scm using the File/New menu. You will now have one de�nitions pane for the
de�nitions you created, and saved in sneeze.scm, and another de�nitions pane with epidemic.scm. You will
need to set the language level to Advanced Student in the Language/How to Design Programs menu, in
order for some of the commands I have put in epidemic.scm to be recognized.

In epidemic.scm, hunt for the comments (the passages beginning with semicolons) that correspond to
each of the de�nitions you created. Cut-and-paste (or carefully retype) your de�nitions immediately below
those passages | no semicolons in front of your de�nitions, please!. When you're done, click Run.

If you complete the Scheme code correctly, you will be prompted for values of virulence, duration,
immunity, and days. Try starting with 10, 15, 5, and 100, respectively. If you're successful, a two-dimensional
simulation of the sneeze epidemic runs each time you click the Run button. You will get di�erent simulations
if you change the values for virulence, duration, immunity, or days. Record your observations and conjectures
in journalA3.

What to submit

Please submit the following �les:

� journalA3

� sneeze.scm

5


