
CSC104, Assignment 2, Winter 2006
Due: Thursday March 2nd, 11:59 pm

Danny Heap

Finger exercises

For this assignment we will be (mainly) working with the programming language Python. The exercises in
this section are meant to guide you through learning how to use enough Python to work on the lazyLit.py
program at the end of this assignment. As always, keep track of things you try (whether they work or not),
in a journal.

1. Create a directory called A2 (you might want to look back at journalA1 to remember how to do
this). Make A2 your current working directory, using the cd command. Start the editor Scite, and
begin a journal entry of your work on assignment 2 with the current date. Save this �le as journalA2.
Summarize all your work on assignment 2 in this journal.

2. You will be using the programming language Python. I will introduce some basic concepts in these
exercises, and you may certainly post questions to the course wiki pages. There is also a tutorial
on using Python at: http://docs.python.org/tut/tut.html, but you may well �nd that it is aimed at
people with some previous programming experience. The same is true of the help available by typing
(of all things) help once you have started up python.

Start out by opening a terminal where you can type commands (as you did for ls and df in assignment
1). Now type python, and then press enter. You should see something like:

Python 2.4.1 (#2, Aug 11 2005, 16:44:28)

[GCC 3.3.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> is indicating where you can type some expression that python will try to understand. Try
typing something arithmetic, for example 1+2, and then press enter. Addition and subtraction ex-
pressions should take a familiar form. Multiplication uses the * character, and division uses /. Try
dividing 10 by 5. Now try dividing 9 by 5. Finally, try dividing 9 by 5.0 | that's 5, followed by a
decimal point, followed by a zero. Explain your results in your journal. When you have had enough,
hold down the \Ctrl" key with one �nger, and then press the \D" key.

3. In assignment 1 you saw that you could store numbers, text, and even formulas in cells, and then
refer to those cells by name: D2 or B3. In Python you are given the freedom to decide on how to
name \cells," provided you choose a name that begins with an alphabetic character and contains only
alphabetic characters, numerals, and the underscore character (uppercase/lowercase is important).
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Start up Python (see the previous exercise), and after the >>> type favouriteNumber, and then press
the enter key. You should see an error message. Now type favouriteNumber = 7, press the enter key,
then type favouriteNumber and press the enter key again. Now store a di�erent number (not 7 again)
in a location named secondFavouriteNumber. Type favouriteNumber + secondFavouriteNumber, then
press enter.

Here's something a little tricky to puzzle over. Type secondFavouriteNumber = favouriteNumber and
press enter. Now check what is stored in favouriteNumber and secondFavouriteNumber (you found out
how to check what is in a location in previous exercises). Now type favouriteNumber = 19 and press
enter. Re-check what values are in the locations named favouriteNumber and secondFavouriteNumber.
Remember to record all your observations in journalA2.

4. You can also store text, or strings of characters, in Python. After the >>> type myWord = 'me', then
press enter. The single quotes (or apostrophes) around 'me' are important, to tip Python o� that this
is a string of characters, and not the name of some location, such as favouriteNumber. Now store the
text 'you' in a location named yourWord. Check what each location contains. Try typing myWord +
yourWord, and then pressing enter. Sorry, that's all the arithmetic you can do with text!

5. After the >>> type myList = [1, 3, 5, 7], then press enter. Check what is contained in the location
named myList. Now type myList[0], then press enter. What about myList[1] or myList[3]? Type
myList[0:3], then press enter. Explain your results as fully as you can.

You can also makes list of words. After the >>> type myWords = ['Double', 'double', 'toil', 'and',
'trouble.'], then press enter. Check what the location named myWords contains. Type fewerWords =
myWords[1:3] and see what the location named fewerWords contains. Also check what the location
named myWords contains. Experiment until you can explain what's going on.

6. Try typing oneWord = 'hand', then press enter, followed by fewerWords + oneWord, then press enter.
Type fewerWords.append('�nger'), then press enter, and check the value of stored at the location
named fewerWords. Type fewerWords = fewerWords * 2, then press enter. Check what is stored at
the location called fewerWords. At this point, you might want to chat with a TA or your instructor
about what's going on.

7. Similar to a list is a tuple. After the >>> type myTuple = ('one', 'two', 'three'), then press enter.
Check what the location named myTuple contains. Try out myTuple[0] and myTuple[0:2]. You might
be tempted to think that tuples and lists are the same until you try myTuple.append('four'). Compare
the e�ect of fewerWords[0] = 'elbow', then press enter, to myTuple[0] = 'elbow', then press enter.

After the >>> type tuple1 = ('one', 'two', 'three') and press enter. Now type tuple2 = ('four',) and
press enter. Finally type tuple1[1:] + tuple2. Experiment with their weird tuple arithmetic.

8. With both lists and tuples you could get an element if you knew its position, for example, in the
last exercise myTuple[0] held the element 'one'. Sometimes it is more convenient to access elements
without knowing their position, but some other key. Try typing province = f'toronto' : 'ontario',
'vancouver' : 'british columbia', 'montreal' : 'quebec'g, then press enter. Now type province['toronto'],
then press enter. Try some other cities.

In the example above, province is a look-up table: we look up the character string for a province
by providing the character string for a city. Look-up tables are even more 
exible than that. After
the >>> type bookTable = f('Alice', 'was', 'becoming') : ['very', 'to']g and then press enter. In the
look-up table bookTable you can retrieve the list of words ['very', 'to'] using the key ('Alice', 'was',
'becoming'). Try typing bookTable[('Alice', 'was', 'becoming')] and then pressing enter.
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9. Time for some lazy repetition. After the >>> type: numberList = [1, 3, 5, 7, 9] and then press enter.
Type sum = 0 and then press enter. Type nextNumber and then press enter (what do you see?). Now
type the following, being sure to leave the same spaces on the left-hand side as shown below (press
enter twice to get back to the left-hand margin after the . . . ):

>>> for nextNumber in numberList:

... print ’nextNumber = ’, nextNumber

... sum = sum + nextNumber

... print ’sum = ’, sum

...

You may want to chat with a TA or instructor about this. A key observation is that all three lines
that are indented under for nextNumber in numberList are repeated.

If you're comfortable with the previous example, try typing wordList = ['my', 'dog', 'has', '
eas'] and
then press enter. Just to convince yourself that there is no location (yet) named nextWord, type
nextWord and then press enter. Now type the following, being sure to leave the same spaces on the
left-hand side as shown below (press enter twice to get back to the left-hand margin after the . . . ):

>>> for nextWord in wordList:

... print ’nextWord is’, nextWord

...

10. Exit Python (by holding down the Ctrl key and pressing D). Make sure that A2 is the current working
directory (type pwd and then press enter to verify this). Now type cp ~heap/pub/alice30.txt . and
press enter. This copies the text of \Alice in Wonderland" to your directory A2. You can examine it
with the text editor Scite. Now we'll do a function de�nition. Type the following, being sure to leave
the same spaces on the left-hand side as shown below. Press enter twice to get back to the left-hand
margin after the . . . (the . . . are generated automatically by Python, just as the >>> are, so you don't
type them).

>>> def readSomeLines(numLines):

... bookFile = file(’alice30.txt’, ’r’)

... for nextLine in bookFile:

... numLines = numLines - 1

... print nextLine

... print nextLine.split(), ’\n’ * 2

... if numLines <= 0: break

... bookFile.close()

After the >>> type readSomeLines(3). Of course, you don't have to stop after 3 lines. This creates
a function (program) called readSomeLines and the number you type in the parenthesis is stored in
the location named numLines for the indented lines of Python. What is the di�erence between what's
stored in nextLine and nextLine.split() at each step?

That's probably plenty of exploring for now. The next section explains the motivation for the lazyLit
module, and the section following that explains how to complete the �le lazyLit.py so that you can run the
module.
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Lazy literature

Throughout your life you are occasionally asked to write documents. Sometimes this task provides an outlet
for creative expression, but sometimes it is simply a chore that must be accomplished. This assignment
provides a modest solution to the latter situation.

We'd all love to write beautifully, in the style of Shakespeare, Brecht, Br�onte, (�ll in your favourite
author here), but beautiful prose takes hard work. On the other hand, there are severe penalties and social
sanctions for trying to pass o� other authors' work as our own. The solution (clearly) is a computer program
that produces prose in the style of (favourite author here), but without copying an actual work of (same
favourite author here).

Here's how the program will work. You give it an example of your favourite author's work, plus a
parameter that we'll call prefLen (for pre�x-length), which is a positive whole number. For the sake of
concreteness, let's suppose that prefLen is 3. The program that you will help build scans your author's
work, looking for groups of 3 adjacent words (pre�xes), and for each pre�x it keeps a list of which words
follow it. For example, in Lewis Carroll's \Alice in Wonderland," the three-word pre�x ('Alice', 'was',
'beginning') is followed by one of the words in the list: ['to', 'very'].

Once your program has recorded all the possible completions that Carroll would use for three-word
pre�xes, we begin our literary adventure by starting out with the �rst three words of \Alice in Wonderland,"
which are ('Alice', 'was', 'beginning'), and then randomly choose one of the words from the list [to, very].
Suppose the next word selected is 'very'. We then check our list to see which words follow the three-word
pre�x ('was', 'beginning', 'very'), and continue building our chain of words, until we have a brand-new piece
of literature in the style of Lewis Carroll.

In the previous section you had an exercise to copy \Alice in Wonderland" from my home directory to
your directory A2, in order to experiment with your program. You may also download lots of public-domain
literature from http://www.gutenberg.org.

Your contribution

I have written two short functions (or programs) in the �le lazyLit.py. Emulate the �nger exercise for
copying alice30.txt to your A2 directory to copy lazyLit.py to your A2 directory.

Change your current working directory to A2. In your terminal window type idle lazyLit.py and then
press enter. Two windows will pop up: one where you can edit the de�nitions of functions buildTable and
useTable, the other where you can experiment with your creations. You can switch between these windows
by clicking them with your mouse.

The function de�nitions for buildTable and useTable are incomplete. Above each function de�nition are
a few lines of text beginning with a single # character that describe the function that follows. These are
comments: python ignores the line following the # character, but human readers (you, for example) should
not.

The �rst line of each function de�nition gives it a name (for example buildTable, and a tuple of param-
eters. When somebody uses the function they store actual values (e.g. numbers or character strings) in the
locations named by those parameters.

The remaining lines of each function de�nition are indented. Some of the lines beginning with a double
##. These are comments that tell you what python code you need to put immediately underneath the ##.
Make sure the code you put in lines up horizontally with the left end of the ## (you should be able to
reach this with tabs).

If you complete the de�nitions correctly (you'll probably want to review the �nger exercises a lot, and
ask your TA and instructor lots of questions), you have a working duo of lazyLit functions. Switch to the
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other window and try:

>>> import lazyLit

>>> bookTable = {}

>>> lazyLit.buildTable(’alice30.txt’, 3, bookTable)

>>> lazyLit.useTable(100, 3, bookTable)

If your functions are working, you'll get some random prose in the style of Lewis Carroll. Otherwise, you
can return to the function de�nitions, �x things up, return to the window for experimentation, type F6, and
repeat the above commands. Whatever happens, record your observations and explanations in journalA2. If
there is some part of the task that is stumping everyone, your TAs and I will consider some judicious hints.
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Solution: Here's a version of the code that worked:

import random # some tools to make things random

# buildTable names a function. You provide values for the parameters

# filename (a string of characters naming a file)

# prefLen (a positive integer)

# bookTable (a lookup table)

def buildTable(filename, prefLen, bookTable):

## store a tuple of prefLen ’\n’ characters at prefix

prefix = (’\n’,) * prefLen

bookFile = file(filename, ’r’)

for nextLine in bookFile:

for nextWord in nextLine.split():

if not bookTable.has_key(prefix):

## store an empty list at bookTable[prefix]

bookTable[prefix] = [] # empty list to start

## append nextWord to bookTable[prefix]

bookTable[prefix].append(nextWord)

prefix = prefix[1:] + (nextWord,) # next prefix

bookTable[prefix] = [’\n’] # special signal value for end-of-book

bookFile.close()

print ’All done building table.’

# useTable names another function. The names created in buildTable are

# not visible inside useTable. You provide values for the parameters:

# numWords (a positive integer)

# prefLen (a positive integer)

# bookTable (a lookup table)

def useTable(numWords, prefLen, bookTable):

## store a tuple of prefLen ’\n’ characters at prefix

prefix = (’\n’, ) * prefLen

## store 0 at wordCount

wordCount = 0

while 1:

## increase value in wordCount by 1

wordCount += 1

random.shuffle(bookTable[prefix])

## store the 0th string from bookTable[prefix] in nextWord

nextWord = bookTable[prefix][0]

## print nextWord, followed by a space

print nextWord, " ",

if nextWord == ’\n’ or wordCount > numWords: break

prefix = prefix[1:] + (nextWord, )
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