
Discriminative Training of Feed-Forward and Recurrent
Sum-Product Networks by Extended Baum-Welch

Haonan Duan, Abdullah Rashwan, Pascal Poupart
University of Waterloo, Waterloo AI Institute, Ontario, Canada

Vector Institute, Toronto, Canada

Zhitang Chen
Huawei Technologies, Hong Kong, China

Abstract

We present a discriminative learning algorithm for feed-forward Sum-Product
Networks (SPNs) (Poon and Domingos, 2011) and recurrent SPNs (Melibari et al.,
2016) based on the Extended Baum-Welch (EBW) algorithm (Baum et al., 1970).
We formulate the conditional data likelihood in the SPN framework as a rational
function, and we use EBW to monotonically maximize it. We derive the algorithm
for SPNs and RSPNs with both discrete and continuous variables. The experi-
ments show that this algorithm performs better than both generative Expectation-
Maximization, and discriminative gradient descent on a wide variety of applica-
tions. We also demonstrate the robustness of the algorithm in the case of missing
features by comparing its performance to Support Vector Machines and Neural
Networks.

Keywords:
Sum-product network, extended Baum-Welch, discriminative learning

1. Introduction

Sum-Product networks (SPNs) were first proposed by Poon and Domingos
(2011) as a new type of deep architecture that can be viewed as probabilistic

Email addresses: h4duan@uwaterloo.ca (Haonan Duan),
arashwan@uwaterloo.ca (Abdullah Rashwan), ppoupart@uwaterloo.ca (Pascal
Poupart), chenzhitang2@huawei.com (Zhitang Chen)

Preprint submitted to International Journal of Approximate Reasoning June 16, 2020

graphical models that are equivalent to arithmetic circuits (ACs) (Darwiche, 2003).
An SPN consists of an acyclic directed graph of sums and products that computes
a non-linear function of its inputs. SPNs can be viewed as deep neural networks
where non-linearity is achieved by products instead of sigmoid, softmax, hyper-
bolic tangent or rectified linear operations. They also have clear semantics in the
sense that they encode a joint distribution over a set of leaf random variables in the
form of a hierarchical mixture model. To better understand this distribution, SPNs
can be converted into equivalent traditional probabilistic graphical models such as
Bayesian networks (BNs) and Markov networks (MNs) by treating sum nodes as
hidden variables (Zhao et al., 2015). An important advantage of SPNs over BNs
and MNs is that marginal inference can be done without any approximation in
linear time with respect to the size of the network. Marginal MAP inference is
still intractable for SPNs (Conaty et al., 2017) (Mei et al., 2018).

Various generative learning algorithms have been designed to estimate the pa-
rameters of SPNs, including Gradient Descent and hard EM (Poon and Domin-
gos, 2011), soft EM (Peharz, 2015), Bayesian moment matching (Rashwan et al.,
2016), collapsed variational Bayes (Zhao et al., 2016a), sequential monomial ap-
proximations and the concave-convex procedure (Zhao et al., 2016b). Discrimina-
tive training of SPNs by gradient descent was introduced by Gens and Domingos
(2012). Although gradient descent is tractable, convergence can be quite slow
since it uses first order approximations. Adel et al. (2015) introduced a novel
discriminative algorithm for SPNs that learns the structure of the SPN while ex-
tracting features that are maximally correlated with the labels. The algorithm has
been shown to perform well compared to generative structure learning algorithms.
However, it is a batch algorithm that recursively performs singular value decom-
positions that are very expensive.

Recurrent sum-product networks (RSPNs), also known as dynamic SPNs, are
a generalization of SPNs for modelling sequence data of varying length (Melibari
et al., 2016). RSPNs can be used in sentiment analysis, speech recognition and
protein sequencing. Similar to most other dynamic graphical models (Bilmes,
2010), an RSPN includes a template network that is repeated as many times as
the number of time slices in a data sequence. The common generative learning
algorithms for RSPNs are EM and gradient descent (Melibari et al., 2016). Kalra
et al. (2018) introduced an online parameter and structure learning algorithm for
RSPNs. However, no discriminative learning algorithm for RSPNs has been pro-
posed yet.

In this paper, we present a novel algorithm to train SPNs and RSPNs discrimi-
natively based on the Extended Baum-Welch technique. While Expectation Max-

2

imization and Baum-Welch are equivalent in generative training, they cannot be
used directly in discriminative training and their extensions for maximizing con-
ditional likelihoods are not the same. Extended Baum-Welch (for discriminative
training) (Gopalakrishnan et al., 1991) is simpler both conceptually and compu-
tationally than conditional EM (for discriminative training) (Jebara and Pentland,
1999, 2001; Salojärvi et al., 2005) and therefore has become the most popular ap-
proach to train HMMs discriminatively. Extended Baum-Welch provides a gen-
eral approach to optimize rational functions such as conditional likelihoods. It
also offers faster convergence than gradient descent while guaranteeing monotonic
improvement at each iteration (Normandin, 1991). In order to apply Extended
Baum-Welch to discriminative SPNs and recurrent SPNs, we will formulate the
conditional distribution as a rational function. We will develop the algorithm with
both multinomial and univariate Gaussian distributions at the leaves.

The paper is structured as follows, Section 2 reviews SPNs, RSPNs, Baum-
Welch and Extended Baum-Welch algorithms. Section 3 introduces discrimina-
tive SPNs and explains how to compute the conditional likelihood for a classifica-
tion task. Then, update formulas for discriminative gradient descent and Extended
Baum-Welch are derived for SPNs with discrete and continuous variables. Sec-
tion 4 describes how to extend the proposed techniques to RSPNs. Section 5
presents three sets of experiments that we carried out to evaluate the performance
of our algorithms. Section 6 concludes the paper.

2. Background

2.1. Sum-Product Networks
A sum-product network (SPN) (Poon and Domingos, 2011) is a probabilis-

tic graphical model that can be used to express a joint distribution over random
variables.

Definition 2.1 (Sum-product network (Poon and Domingos, 2011)). An SPN
over random variables x1, ..., xn is a rooted acyclic directed graph where the inte-
rior nodes either compute products (product nodes) or weighted sum (sum nodes)
of their inputs and the leaves are univariate probability distributions for one of
the random variables x1, ..., xn. The edges emanating from sum nodes are la-
beled with weights θij (where i is the source node, j is the destination node, and
θij > 0).

Note that Definition 2.1 is slightly different from the one proposed by Poon
and Domingos (2011) in that the random variables are not restricted to be binary.

3

Figure 1: An example of SPN

In this paper, we will consider leaves that consist of Bernoulli distributions over
binary variables and univariate Gaussian distributions over continuous variables.
Other works also consider SPNs with leaves that contain multivariate discrete
distributions (Rooshenas and Lowd, 2014), Poisson distributions (Molina et al.,
2017), multivariate Gaussian distributions (Jaini and Poupart, 2016; Hsu et al.,
2017) distributions from the exponential family (Desana and Schnörr, 2016) and
piecewise polynomial distributions (Molina et al., 2018).

An SPN encodes a function F (x) that takes as input a variable assignment
X = x and produces an output at its root. This function is defined recursively at
each node i as follows:

Fi(x) =

P (Xi = xi) i is a leaf∏

j∈children(i) Fj(x) i is a product∑
j∈children(i) θijFj(x) i is a sum

(1)

Here, P (Xi = xi) denotes the probability of the random variable in the leaf i
taking value xi. If none of the variables in leaf i are instantiated by X = x
then P (Xi = xi) = P (∅) = 1. Note also that if leaf i contains continuous
variables, then P (Xi = xi) should be interpreted as a probability density function
pdf(Xi = xi).

Figure 1 shows an example of an SPN with three Bernoulli random variables,
where

⊕
represents a sum node and

⊗
represents a product node. The root

function F (x1, x2, x3) = θ12F2 + θ13F3 = θ12x3F4F5 + θ13x̄3F4F5 = (θ12x3 +
θ13x̄3)F4F5 = (θ12x3 + θ13x̄3)(θ47x1 + θ49x̄1)(θ58x2 + θ510x̄2)

The value of an SPN is the value of its root, which can be naturally evaluated
in a bottom-up fashion. Computing partial derivatives of an SPN with respect

4

to any node can be done efficiently using the backpropogation algorithm of a
computation graph, which is an inexpensive procedure that applies the chain rule
in calculus recursively (Goodfellow et al., 2016). The backpropagation algorithm
applied on an SPN to compute partial derivatives is given in Algorithm 1 (Gens
and Domingos, 2012):

Algorithm 1: Backpropogation algorithm for partial derivatives of SPNs
Input: A valid SPN and an array F which stores the evaluation of each

node, where Fi denotes the value of node i
Output: Partial derivatives with respect to all nodes, ∂Froot

∂Fi

1 Initialize ∂Froot

∂Fi
= 0 except ∂Froot

∂Froot
= 1

2 for all nodes i in top down order do
3 if i is a sum node then
4 for all children j of node i do
5 ∂Froot

∂Fj
+= θij

∂Froot

∂Fi

6 else if i is a product node then
7 for all children j of node i do
8 ∂Froot

∂Fj
+= ∂Froot

∂Fi

Fi

Fj

9 else if i is a leaf node then
10 continue

Fi is the value of the sum node based on θij and Fj is the value of the child
node. Using the chain rule, we obtain:

∂Froot
∂θij

= Fj
∂Froot
∂Fi

(2)

Using Equation 2 and Algorithm 1, we can calculate ∂Froot

∂θij
in linear time.

An SPN is said to be valid when the root node always correctly computes
a value proportional to the probability of evidence for any evidence (Poon and
Domingos, 2011). Decomposability and completeness are sufficient conditions
that ensure validity (Darwiche, 2003; Poon and Domingos, 2011). Below we
define decomposability and completeness in terms of the scope of a node.

Definition 2.2 (Scope). If node n is a leaf with base distribution P (X = x), then
scope(n) = {X}, otherwise scope(n) = ∪j∈children(n)scope(j).

In other words, the scope of a node n is the set of all variables that appear in

5

the leaves of the sub-SPN rooted at n. For example, in Figure 1, the scope of node
9 is {X1} and the scope of node 1 is {X1, X2, X3}

Definition 2.3 (Decomposability). An SPN is decomposable when each product
node has children with disjoint scopes.

Definition 2.4 (Completeness). An SPN is complete when each sum node has
children with identical scope.

Theorem 2.1. (Poon and Domingos, 2011) If an SPN is decomposable and com-
plete, then it is valid.

In the following discussion of the paper, all SPNs refer to decomposable and
complete SPNs unless otherwise stated.

A valid SPN can be used to encode a joint distribution over X, which is defined
by the graphical structure and the weights. The probability of a joint assignment
X = x is proportional to the value at the root of the SPN induced by setting the
variables according to the joint assignment.

P (X = x) =
Froot(x)

Froot(∅)
(3)

The normalization constant needed to obtain a probability is Froot(∅) where ∅ is
the empty variable assignment, which means that all the variables are marginal-
ized. Equation 3 can also be used to compute the marginal probability of a partial
assignment Y = y where Y ⊆ X. Conditional probabilities can also be com-
puted by evaluating two partial assignments:

P (Y = y|Z = z) =
P (Y = y,Z = z)

P (Z = z)
=
Froot(y, z)

Froot(z)
(4)

For a valid SPN, joint, marginal and conditional queries can all be answered
by two network evaluations, exact inference takes linear time with respect to the
size of the network. This is a remarkable property since inference in Bayesian
and Markov networks may take exponential time in the size of the network (i.e.,
number of nodes, edges and parameters).1

1It is common to measure the complexity of probabilistic graphical models with respect to their
tree-width, however tree-width is not a practical statistic since finding the tree-width of a graph is
NP-hard. Instead, we describe the complexity of inference with respect to the size of the graph
(number of nodes, edges and parameters), which is immediately available.

6

2.2. Recurrent Sum-Product Network
Static graphical models, such as SPNs and Bayesisan networks, can only be

used to learn data of fixed length. However, in some domains like speech recog-
nition and sentiment analysis, we are often given sequence data of varying length.
Dynamic graphical models consist of a static graphical model G(V,E) (often
called template) that is repeated as many times as the length of a data sequence
(Bilmes, 2010). Dynamic Bayesian Networks (Murphy, 2002) are examples of
dynamic graphical models. DBNs generalize BNs in a sense that BNs are used
as templates for DBNs. Any static graphical model can be generalized into a
dynamic graphical model (Bilmes, 2010).

RSPNs are dynamic graphical models with templates being SPNs. Thus, one
advantage of RSPNs compared with most other dynamic graphical models is that
(marginal) inference complexity for RSPNs is linear in the length of data se-
quences and the size of the template network.

Consider a data sequence of T time slices with each time slice containing n
variables. This sequence can be modeled by an RSPN which consists of T −
1 template networks on top of a bottom network and capped by a top network
(Melibari et al., 2016). The definitions of template network, bottom network and
top network are given below.

Definition 2.5 (Template Network). A template network is a directed acyclic
graph with k roots and k + d leaf nodes (where d ≥ n). The d leaves repre-
sent univariate distributions of each data component in one time slice, and the
remaining k leaves (interface nodes) are shared with the previous time slice (input
interface nodes). The k roots are interface nodes shared with the next time slice
(output interface nodes).

Definition 2.6 (Bottom Network). A bottom network is a directed acyclic graph
with k roots and d leaf nodes. The d leaf nodes are univariate distributions of each
data component in one time slice. The k root nodes are output interface nodes
connected to the second time slice.

Definition 2.7 (Top Network). A top network is a directed acyclic graph with one
root and k leaf nodes. The k leaves are input interface nodes, which also appear
in the top of the template network at the last time slice.

Figure 2 is a template network based on the SPN in Figure 1, and Figure 3 is
an RSPN using Figure 2 as the template network.

Melibari et al. (2016) proved that any RSPN is also a valid SPN under certain
invariance constraints, which allows us to check validity of an RSPN without

7

having to unroll the network and evaluate the scope of each sum and product
node.

Definition 2.8 (Invariance (Melibari et al., 2016)). Define T to be a template
network over data in one step < X1, ..., Xn >

t and I be the set of input interface
nodes of T . Let f be a bijective mapping between input interface nodes and
output interface nodes. Let the scope of each input interface node i of the template
network be the same as the scope of the corresponding output interface node j in
the bottom network (i.e., scope(i) ← scope(j) where j = f(i)). Then T is
invariant if the following properties hold:

1. ∀i ∈ I, scope(i) ∩ {X t
1, ..., X

t
n} = ∅

2. ∀i, j ∈ I, scope(i) ∩ scope(j) = ∅ ∨ scope(i) = scope(j)

3. The bijective mapping f from input interface nodes to output interface
nodes satisfies the following properties: ∀i, j ∈ I, scope(i) ∩ scope(j) =
∅ ⇐⇒ scope(f(i)) ∩ scope(f(j)) = ∅ and ∀i, j ∈ I, scope(i) =
scope(j) ⇐⇒ scope(f(i)) = scope(f(j))

4. All interior and output sum nodes are complete
5. All interior and output product nodes are decomposable

Theorem 2.2 ((Melibari et al., 2016)). An RSPN is a valid SPN if the following
property holds:

1. The bottom network is complete and decomposable
2. The scopes of all pairs of output interface nodes of the bottom network are

either identical or disjoint
3. The template network is invariant
4. The top network is complete and decomposable

One can check that the template network in Figure 2 is invariant based on
Definition 2.8 and the RSPN in Figure 3 is complete and decomposable using
Theorem 2.2.

2.3. Extended Baum-Welch Algorithm
The Baum-Welch (BW) algorithm was introduced in 1970 to estimate the pa-

rameters for HMMs (Baum et al., 1970). BW provides an iterative scheme that
monotonically increases the value of homogeneous polynomials with nonnega-
tive coefficients over the probability simplex. The algorithm was then extended to

8

Figure 2: A template network for RSPNs based on Figure 1

Figure 3: An RSPN which uses Figure 2 as the template network

9

maximize rational functions (i.e., ratio of two polynomial functions) (Gopalakr-
ishnan et al., 1991), which made it very useful in discriminative training settings.
Extended Baum-Welch (EBW) was used to discriminatively train HMMs, GMMs,
as well as discrete distributions (Pernkopf and Wohlmayr, 2010; Normandin and
Morgera, 1991). In this section, we will review the original Baum-Welch algo-
rithm, then we will explain how it was extended to work for rational polynomials.
Finally, we will show how to use EBW to train SPNs discriminatively in Section 3.

Theorem 2.3. (Baum et al., 1967) Define S(θ) be a homogeneous degree d poly-
nomial with non-negative coefficients. Let θ̄ := {θ̄ij} be any point in the domain
D :

∑
j θ̄ij = 1, ∀i. Then θ̂ = T (θ̄) = T ({θ̄ij}) is a transformation function:

θ̂ij =
θ̄ij

∂S
∂θij

(θ̄)∑
j θ̄ij

∂S
∂θij

(θ̄)
, (5)

where
∑

j θ̄ij
∂S
∂θij

(θ̄) 6= 0, ∂S
∂θij

(θ̄) is the value of ∂S
∂θij

at θ̄. Then, S(θ̂) > S(θ̄)

unless T (θ̄) = θ̄.

Theorem 2.3 is applied iteratively to optimize a polynomial S(θ). The trans-
formation T (θ̄) is called a growth transformation since it increases S(θ) mono-
tonically. In discrete HMMs and other discrete mixture models, the likelihood
function is a polynomial in the parameters θ and therefore Equation 5 can be used
to iteratively improve the parameters in a way that the likelihood monotonically
improves. Interestingly, we obtain the same update formula as for Expectation-
Maximization.

Gopalakrishnan et al. (1991) extended Theorem 2.3 to rational functions. In
what follows, we will give an overview of how Gopalakrishnan et al. (1991)
reduced the problem of finding growth transformations for rational functions to
finding growth transformations for homogeneous polynomials with non-negative
coefficients.

Let Rd(θ) =
S1(θ)

S2(θ)
, where S1(θ), S2(θ) are two polynomials defined in do-

main D :
∑

j θij = 1. Then finding a growth transformation for Rd(θ) can be
reduced to the problem of homogeneous polynomials with non-negative coeffi-
cients (which allows us to apply Theorem 2.3) in the following steps:

1. For any x ∈ D, construct a polynomial Px(θ) := S1(θ) − Rd(x)S2(θ). It
can be shown that if Px(y) > Px(x), ∀y ∈ D, then Rd(y) > Rd(x). In this
way, the problem of finding growth transformations for rational functions
(Rd(θ)) is reduced to polynomials (Px(θ)).

10

2. In this step, Gopalakrishnan et al. (1991) found a polynomial with nonneg-
ative coefficients such that any growth transformation of that polynomial is
also a growth transformation of Px(θ). Let d be the degree of Px(θ) and a
be the minimal negative coefficient. Define C(θ) := −a(

∑
i,j θij + 1)d and

P ′
x(θ) := Px(θ) + C(θ) . Then it can be shown easily that the coefficients

of P ′
x(θ) are all nonnegative and C(θ) is a constant on D (thus any growth

transformation of P ′
x(θ) is also a growth transformation of Px(θ)).

3. Gopalakrishnan et al. (1991) showed that P ′
x(θ) has an equivalence repre-

sentation as a homogeneous polynomial. Let d be the degree of Px(θ) and
β = 1. Then βdP ′

x(
θ
β
) is a homogeneous polynomial and ∀θ ∈ D, P ′

x(θ) =

βdP ′
x(

θ
β
).

Based on the above three steps, Gopalakrishnan et al. (1991) proposed an it-
erative algorithm to monotonically increase rational functions on the probability
simplex.

Theorem 2.4. (Gopalakrishnan et al., 1991) Define Rd(θ) to be a rational func-
tion. There exists a sufficiently large constant D such that TD is a growth trans-
formation for Rd(θ):

(TC(θ))ij =

θij

(
∂Px
∂θij

(θ) +D

)
∑
j

θij

(
∂Px
∂θij

(θ) +D

) (6)

Constant D plays an important role in the discriminative training part. D tries
to preserve the previous parameters. The larger D is, the stronger will be the
influence of the previous parameters on the current ones. Gopalakrishnan et al.
(1991) point out that the D required in Theorem 2.4 is too large to be useful. In
practice, we will choose D to be slightly larger than the minimum required for all
weights of sum nodes and variance of Gaussian leaves to be positive.

In discriminative learning, the conditional probability can typically be ex-
pressed as a rational functionRd(θ) (i.e., the data likelihood divided by the marginal
of the inputs).

In the next two sections, we will show how to construct a polynomial S(θ)
from the rational function corresponding to the conditional probability of SPNs
and RSPNs and then apply the growth function to improve the conditional proba-
bility monotonically.

11

Figure 4: Class conditional SPN architecture.

3. Discriminative learning for Sum-Product Networks

Let the training set be X = {x1, ...,xN} and the corresponding labels Y =
{y1, ..., yN}, where xi ∈ {0, 1}M , yi ∈ {0, ..., Y }, N is the number of training
examples, M is the feature size, and Y is the number of class labels. In this
section, we first provide some preliminary derivations for discriminative training
of SPNs, then extend the discriminative gradient descent technique proposed by
Gens and Domingos (2012) to continuous SPNs with Gaussian leaves, and finally
we describe our new discriminative learning technique based on Extended Baulm-
Welch.

In discriminative training, we maximize the conditional probability distribu-
tion P (y|x). To do that, we use the SPN architecture shown in Figure 4 where
there is a sub-SPN, SPNy, for each class y, and sub-SPNs can share part of the
network. Each sub-SPN models the probability of an observation given the class
label, F y

root(x) = p(x|y). Evaluating the whole network gives us the probability
of an observation, p(x) =

∑
y p(y)F y

root(x). According to Bayes rule, the condi-
tional probability can be computed as follows:

P (y|x) =
p(y)p(x|y)

p(x)
=
p(y)F y

root(x)

Froot(x)
(7)

The label associated with the sub-SPN that maximizes the conditional proba-
bility distribution is selected as follows:

argmaxy=1,...,Y p(y)F y
root(x) (8)

In the training phase, the posterior P (Y|X) is maximized. The posterior is

12

computed in terms of the prior and the likelihoods as follows

P (Y|X) =
N∏
n=1

P (yn|xn) =
N∏
n=1

P (yn)F yn
root(xn)

Froot(xn)
(9)

Similarly log(P (Y|X)) is computed as follows.

log(P (Y|X)) =
N∑
n=1

log(p(yn)F yn
root(xn))− log

(
Froot(xn)

)
(10)

Estimating P (y) can be done easily and robustly by normalizing the class
frequencies in the training data. Estimating the parameters of P (x|y), which are
the weights of F y

root(x), is harder and usually does not have a closed form solution.
Iterative methods are used in this case.

We will use F y
j (x) to refer to the value of the sub-SPN associated with class

y at node j. Throughout the derivations, we assume that the SPN is always nor-
malized to ensure that P (x|y) = F y

root(x). This can be done by normalizing the
weights after each iteration.

Finally, we will need to compute the partial derivative of the log likelihood
with respect to an arbitrary parameter θij in the SPN, where subscript i indicates
that the parent node of the parameter is node i and the child node is j. The deriva-
tive of the log likelihood can be obtained as follows:

∂log(P (Y|X))

∂θij
=

N∑
n=1

p(yn)
∂F yn

root

∂θij
(xn)

p(yn)F yn
root(xn)

−
∂Froot

∂θij
(xn)

Froot(xn)

=
N∑
n=1

1

F yn
root(xn)

∂F yn
root

∂θij
(xn)− 1

Froot(xn)

∂Froot
∂θij

(xn) (11)

Here, ∂F yn
root

∂θij
(xn) and ∂Froot

∂θij
(xn) can be calculated using Equation 2 in linear

time. If θij only appears in sub-SPN F y , then Equation 11 can be further simpli-
fied. In this case, we use θy to denote the parameter appearing only in sub-SPN
F y.

Since we know that ∂F
yn
root

∂θy
= 0 when y 6= yn, we can rewrite ∂F yn

root

∂θy
as follows:

∂F yn
root

∂θy
= 1[y∈SPNyn]

∂F y
root

∂θy
(12)

13

Also, since Froot(xn) =
∑

y p(y)F y
root(xn), we can rewrite ∂Froot

∂θy
(xn) as fol-

lows:
∂Froot
∂θy

(xn) = p(y)
∂F y

root

∂θy
(xn) (13)

Finally, based on Equations 12 and 13 we can rewrite Equation 11 as follows:

∂log(P (Y|X))

∂θy
=

N∑
n=1

∂F y
root

∂θy
(xn)

[
1[y=yn]

F yn
root(xn)

− p(y)

Froot(xn)

]
=

N∑
n=1

∂F y
root

∂θy
(xn)γn

(14)
where γn ≥ 0.

3.1. Discriminative Learning for SPNs Using Gradient Descent
Gens and Domingos (2012) showed how to train edge weights for SPNs dis-

criminatively by taking the gradient of the conditional log likelihood log(P (Y|X)).
We briefly state how to compute discriminative gradients in continuous SPNs with
Gaussian leaves.

Using Equation 11, the following formula can be used to update each edge
weight θij by taking a small step η in the direction of the gradient.

θij ← θij + η
∂log(P (Y|X))

∂θij
(15)

For univariate Gaussian nodes, we use µuv and σ2
uv to denote the mean and

variance of leaf node u for variable v. µuv and (σ2)uv can be updated by taking a
small step η in the direction of the gradient.

µuv ← µuv+η
∑
n

xnv − µuv
(σ2)uv

Nuv(xnv)

(
1

F yn
root(xn)

∂F yn
root

∂Fuv
(xn)− 1

Froot(xn)

∂Froot
∂Fuv

(xn)

)
(16)

(σ2)uv ← (σ2)uv+η
∑
n

Nuv(xnv)
2(σ2)uv

[
(xnv − µuv)2

(σ2)uv
−1

](
1

F yn
root(xn)

∂F yn
root

∂Fuv
(xn)− 1

Froot(xn)

∂Froot
∂Fuv

(xn)

)
(17)

14

3.2. Discriminative Learning for SPNs using Extended Baum-Welch
We first derive the Baum-Welch algorithm to maximize the log likelihood for

SPNs in a generative way. Theorem 2.3 can be applied to SPNs assuming that the
network is normalized. In that case, the polynomial S(θ) is the likelihood of the
data, which corresponds to a product of network polynomials, i.e., P (X|Y) =∏

n Froot(xn). The parameters θ = {θij} of the polynomial satisfy the condition∑
j θij = 1 since the sum of the weights for each sum node is one. To apply

Theorem 2.3, we need to deal with the sum of the log-likelihoods, log(P (X|Y)),
instead of the likelihood of the data, P (X|Y), since log(P (X|Y)) is easier to
differentiate. We have

∂log(P (X|Y))

∂θij
=

1

P (X|Y)

∂P (X|Y)

∂θij
(18)

Hence, we can rewrite Equation 5 as follows.

θ̂ij =
θijP (X|Y)∂log(P (X|Y))

∂θij∑
j θijP (X|Y)∂log(P (X|Y))

∂θij

=
θij

∂log(P (X|Y))
∂θij∑

j θij
∂log(P (X|Y))

∂θij

(19)

The above formula is the same update formula obtained by Expectation-Maximization
and the Convex-Concave Procedure (CCCP) (Zhao et al., 2016b).

In discriminative training for SPNs, applying Expectation-Maximization or
CCCP does not lead to a closed form update formula (Gens and Domingos, 2012).
Jebara and Pentland (1999, 2001) derived a conditional version of EM that turned
out to be complicated and computationally demanding. Salojärvi et al. (2005) de-
rived a simpler and faster update formula, but it requires second order derivatives,
which is not tractable in large models with many parameters such as SPNs. In con-
trast, EBW can be applied to maximize the conditional likelihood with a closed
form formula. Before applying EBW on conditional likelihood, let’s derive an
equation about log(Rd(θ):

15

∂log(Rd(θ))

∂θij
=
∂log(S1(θ))

∂θij
− ∂log(S2(θ))

∂θij

=
1

S1(θ)

∂S1(θ)

∂θij
− 1

S2(θ)

∂S2(θ)

∂θij

=
1

S1(θ)
(
∂S1(θ)

∂θij
− S1(θ)

S2(θ)

∂S2(θ)

∂θij
)

=
1

S1(θ)
(
∂S1(θ)

∂θij
−Rd(θ)

∂S2(θ)

∂θij
)

=
1

S1(θ)

∂Px(θ)

∂θij

(20)

Based on equation 20 and Theorem 2.4, Gopalakrishnan et al. (1991) proposed
the following update formula:

θ̂ij =

θ̄ij

[
∂logRd

∂θij
(θ̄) +D

]
∑
j

[
θ̄ij
∂logRd

∂θij
(θ̄)

]
+D

(21)

To apply EBW to SPNs, we have to define the rational function Rd, which
in this case is the posterior P (Y|X). The parameters θ of the posterior are the
weights θij , the mean µuv, and the variance (σ2)uv.

For sum nodes, the weights will be updated as follows.

θ̂ij =

θij

[∑
n

1

F yn
root(xn)

∂F yn
root

∂θij
(xn)−

1

Froot(xn)

∂Froot

∂θij
(xn)

]
+Dθij[∑

j∈Children(i)

∑
n

1

F yn
root(xn)

∂F yn
root

∂θij
(xn)−

1

Froot(xn)

∂Froot

∂θij
(xn)

]
+D

(22)

Normandin and Morgera (1991) proposed a discrete approximation for uni-
variate Gaussian distributions that allows us to update µuv and (σ2)uv:

µ̂uv =

[∑
n

(
Nuv(xnv)

F yn

root(xn)

∂F yn

root

∂Fuv
(xn)−

Nuv(xnv)

Froot(xn)

∂Froot

∂Fuv
(xn)

)
xnv

]
+Dµuv[∑

n

(
Nuv(xnv)

F yn

root(xn)

∂F yn

root

∂Fuv
(xn)−

Nuv(xnv)

Froot(xn)

∂Froot

∂Fuv
(xn)

)]
+D

(23)

16

Figure 5: Discriminative RSPN structure

ˆ(σ2)uv =

[∑
n

(
Nuv(xnv)

F yn

root(xn)

∂F yn

root

∂Fuv
(xn)−

Nuv(xnv)

Froot(xn)

∂Froot

∂Fuv
(xn)

)
x2nv

]
+D

[
(σ2)uv + (µuv)

2

]
[∑

n

(
Nuv(xnv)

F yn

root(xn)

∂F yn

root

∂Fuv
(xn)−

Nuv(xnv)

Froot(xn)

∂Froot

∂Fuv
(xn)

)]
+D

−(µ̂uv)
2

(24)

Kanevsky (2004) proved that the discrete probability approximation of Gaus-
sian densities in Equations 23 and 24 along with Equation 21 are growth transfor-
mations for some sufficiently large D and when Rd(θ) is a rational function that
satisfies some smoothness constraints.

4. Discriminative learning for Recurrent Sum-Product Networks

In this section, our goal is to classify multivariate sequential data. Let the
training set be S = {s1, ..., sN} and the corresponding labels associated with
each sequence Y = {y1, ..., yN}, where si = ((s11, ..., s1M), ..., (sli1, ..., sliM)),
yi ∈ {0, ..., Y }, N is the number of training examples, M is the feature size, li
is the length of the sequence si, and Y is the number of classes. We will derive

17

the formulas to learn RSPNs discriminatively using gradient descent and extended
Baum-Welch.

Figure 5 shows an example of RSPNs’ architecture used in discriminative
learning, which is a generalization of the architecture in Figure 2. In the top net-
work, each input interface node represents the conditional probability given one
class. The template network is modelling only the explanatory variables during
each time slice.

Similar to discriminative learning for SPNs, when training discriminative RSPNs,
we are also trying to maximize the posterior P (Y|S).

P (Y|S) =
N∏
n=1

P (yn|sn) =
N∏
n=1

P (yn)F yn
n (sn)

F root
n (sn)

(25)

However, different from SPNs, the polynomial function represented by RSPNs
also depends on the length of the input data. We use subscript n to denote the
different polynomials associated with each data sequence since they may have
different lengths. The conditional log likelihood is computed as follows:

log(P (Y|S)) =
N∑
n=1

log(p(yn)F yn
n (sn))− log

(
F root
n (sn)

)
(26)

Similar to Equation 11, the partial derivative of log(P (Y|X)) with respect to
an arbitrary parameter θij is:

∂log(P (Y|S))

∂θij
=

N∑
n=1

1

F yn
n (sn)

∂F yn
n

∂θij
(sn)− 1

F root
n (sn)

∂F root
n

∂θij
(sn) (27)

Using the fact that same parameters are shared among time slices and applying
the chain rule of multivariate calculus, we can extend Equation 2 to RSPNs:

∂Fn
∂θij

=
ln∑
k=1

∂Fn
∂Fki

∂Fn,ki
θij

=
ln∑
k=1

Fn,kj
∂Fn
∂Fki

(28)

Here, ln denotes the length of the data sequence n and Fn,kj denotes the value
of node j in the k-th time slice for the data sequence n.

18

Thus, Equation 27 can be rewritten as:

∂log(P (Y|S))

∂θij
=

N∑
n=1

(
1

F yn
n (sn)

ln∑
k=1

Fn,kj
∂F yn

n

∂Fki
− 1

F root
n (sn)

ln∑
k=1

Fn,kj
∂F root

n

∂Fki

)
(29)

Since each RSPN is also a valid SPN, Algorithm 1 can be used to calculate
∂F yn

n
∂Fki

and ∂F
root
n

∂Fki
.

4.1. Discriminative Learning for RSPNs Using Gradient Descent
Using Equation 29, the formula to update the weight of a sum node using

gradient descent, θij is:

θij ← θij + η
∂log(P (Y|S))

∂θij
(30)

Similarly, for leaf univariate Gaussian distributions, using Equation 29 and
applying the chain rule on the Gaussian density function, the formula to update
µuv and (σ2)uv is:

µuv ← µuv + η

(
N∑
n=1

(
1

F yn
n (sn)

ln∑
k=1

Nuv(snvk)
snvk − µuv

(σ2)uv

∂F yn
n

∂F uvk

− 1

F root
n (sn)

ln∑
k=1

Nuv(snvk)
∂F root

n

∂F uvk

snvk − µuv
(σ2)uv

)) (31)

σ2
uv ← σ2

uv + η

(
N∑
n=1

(
1

F yn
n (sn)

ln∑
k=1

Nuv(snvk)
2(σ2)uv

[
(snvk − µuv)2

(σ2)uv
− 1

]
∂F yn

n

∂F uvk

snvk − µuv
(σ2)uv

− 1

F root
n (sn)

ln∑
k=1

Nuv(snvk)
2(σ2)uv

[
(snvk − µuv)2

(σ2)uv
− 1

]
∂F root

n

∂F uvk

snvk − µuv
(σ2)uv

))
(32)

Here, snvk denotes the value of variable v in time slice k of data sequence sn,
and Fuvk is the leaf node u for variable v in the k-th time slice.

19

4.2. Discriminative Learning for RSPNs Using Extended Baum-Welch
Combining with Equation 21 and Equation 29, we can get the formula to up-

date θij using Extended Baum-Welch:

θ̂ij =

θij(
∂log(P (Y|S))

∂θij
+D)

∑
j

(θij
∂log(P (Y|S))

∂θij
) +D

=

θij

(∑
n

(
1

F yn
n (sn)

∑
k

Fn,kj
∂F yn

n

∂F ki
−

1

F root
n (sn)

∑
k

Fn,kj
∂F root

n

∂F ki

)
+D

)
∑
j

(
θij

(∑
n

(
1

F yn
n (sn)

∑
k

Fn,kj
∂F yn

n

∂F ki
−

1

F root
n (sn)

∑
k

Fn,kj
∂F root

n

∂F ki

)))
+D

(33)
Using the discrete approximation for univariate Gaussian distributions sug-

gested in Section 3.2, the formula to update µuv and σ2
uv is as follows:

µ̂uv =

[∑
n

∑
k

((
Nuv(snjk)

F yn

root(sn)

∂F yn

root

∂Fuvk
(sn)−

Nuv(xnjk)

Froot(sn)

∂F root
n

∂Fuvk
(sn)

)
snvk

)]
+Dµuv[∑

n

∑
k

(
Nuv(snjk)

F yn

root(sn)

∂F yn

root

∂Fuvk
(sn)−

Nuv(xnjk)

F root
n (sn)

∂Froot

∂Fuv
(sn)

)]
+D

(34)

(σ̂2)uv =

[∑
n

∑
k

(
Nuv(snjk)

F yn

root(sn)

∂F yn

root

∂Fuvk
(sn)−

Nuv(xnvk)

F root
n (sn)

∂F root
n

∂Fuvk
(sn)

)
x2nvk

]
+D

[
(σ2)uv + (µuv)

2

]
[∑

n

∑
k

(
Nuv(xnvk)

F yn

root(sn)

∂F yn

root

∂Fuvk
(sn)−

Nuv(xnvk)

F root
n (sn)

∂Froot

∂Fuvk
(sn)

)]
+D

− (µ̂uv)
2

(35)

5. Experiments

To evaluate discriminative SPNs using EBW, we carried out four experiments.
In the first and second experiment, we compared EBW to generative EM (dis-
criminative EM requires second order derivatives (Salojärvi et al., 2005), which

20

Table 1: Description of eight datasets used to train feedforward SPNs
Dataset Var# Dataset Size Classes# Var Type
Banknote (Lohweg et al., 2013a) 4 1371 2 Binary
Voice (Becker, 2016) 20 3167 2 Cont
Credit Card (Dal Pozzolo et al., 2014) 29 284806 2 Cont
Breast Cancer (Michalski et al., 1986) 30 865 2 Cont
Sensorless Drive (Lohweg et al., 2013b) 48 58509 11 Cont
Fault Detection (Huawei) 70 14354 41 Cont
Activity Recognition (Anguita et al., 2012) 561 10299 6 Cont
MNIST (LeCun et al., 1998) 784 70000 10 Binary

are not tractable for SPNs of 1 thousand to 1 million parameters) and discrimi-
native gradient descent on SPNs and RSPNs respectively. The third experiment
aims to illustrate the advantage of SPNs over Support Vector Machines (SVMs)
and Neural Networks in the case of missing features. In a fourth experiment, we
trained an SPN on MNIST images using generative EM and discriminative EBW.
We sample images from the resulting SPNs, and we show the effect of using dis-
criminative training on the model parameters.

For all experiments, we generated dense SPNs by using a variant of the algo-
rithm proposed in (Poon and Domingos, 2011). We recursively construct the SPN
structure in a top down fashion as follows. We treat the variables of each prob-
lem as a 1D array (or 2D array in the case of MNIST) based on the order of the
features in the data. For each sum node, we construct children product nodes cor-
responding to all splits of the scope in two sub-arrays of variables (all vertical and
horizontal splits in two 2D arrays in the case of MNIST). We stop when the scope
has a single variable, in which case, a univariate leaf distribution is generated. To
control the size of the network, we randomly skip some partitions.

5.1. EBW versus Other Parameter Learning Algorithms
In the first and second experiment, we used sixteen different datasets (8 for

SPNs and 8 for RSPNs)2 that span a wide spectrum of domains. The descriptions
of the eight datasets used to train feedforward SPNs are in Table 1 3, and the

2The datasets are publicly available at archive.ics.uci.edu/ml/, kaggle.com or timeseriesclassi-
fication.com except fault detection, which is a private dataset collected by Huawei.

3For banknote datset, we binarized all features by setting values smaller than the mean to 0 and
1 otherwise. This was done to increase the number of binary benchmarks.

21

Table 2: Test accuracy of EBW, generative EM, and discriminative GD on SPNs with the approx-
imate # of nodes and parameters reported in the second and third column.

Dataset # nodes # params EBW genEM discGD
Banknote 163 64 86.13% 83.94% 86.13%
Voice 2.1k 1.4k 97.15% 96.20% 96.20%
Credit Card 4.7k 3.5k 99.92% 99.38% 99.92%
Breast Cancer 6.1k 4.3k 96.42% 92.85% 91.07%
Sensorless Drive 67k 52k 99.44% 99.36% 55.41%
Fault Detection 288k 192k 60.45% 58.67% 58.12%
Activity Recognition 93k 64k 90.53% 88.66% 76.45%
MNIST 1.5M 1M 95.07% 93.35% 62.89%

Table 3: Description of eight datasets used to train RSPNs
length class # dimensions # train size test size

Japan Vowel 7-29 9 12 270 370
Arabic Digit 4-93 10 13 6600 2200
AUSLAN 45-136 95 22 1140 1425
wafer 104-198 2 6 298 896
libras 45 15 2 180 180
CharacterTrajectories 109-205 20 3 300 2558
uWaveGestureLibrary 315 8 3 200 4278
PEMS 144 7 963 267 173

other eight multivariate and sequential datasets to train RSPNs can be found in
Table 3. For the datasets that do not have training and testing splits, we use 10%
of the data for testing and the rest for training. While we applied the algorithm on
datasets where the variables are binary and continuous, our implementation can
also handle categorical variables.

EBW has one hyper-parameter D. Initializing D to 0.1 and increasing it after
each epoch by 0.1 produces the best results. Generative EM does not have any
hyper-parameters. For gradient descent, we found that initializing the learning
rate to 1 and decreasing it after each epoch by multiplying by 0.9 produces the
best results. During the experiments, we limited the number of epochs to 20.

Table 2 shows the test accuracy of EBW, discGD and genEM on SPNs, and
Table 4 shows the corresponding results for RSPNs. In both tables, EBW always
outperforms genEM. We also observed that discGD converges quickly to good

22

Table 4: The test accuracies of EBW, generative EM, and discriminative GD on RSPNs
Dataset EBW genEM discGD
Japan Vowel (Kudo et al., 1999) 94.10% 91.90% 89.19%
Arabic Digit (Hammami and Bedda, 2010) 93.18% 92.70 % 93.18%
AUSLAN (Kadous, 2002) 84.21% 78.95 % 77.19%
wafer (Olszewski, 2001) 97.20% 95.53 % 97.09%
libras (Dias et al., 2009) 97.20% 94.44 % 95.56%
CharacterTrajectories (Williams et al., 2006) 62.54 % 58.64 % 60.59%
uWaveGestureLibrary (Liu et al., 2009) 72.46 % 70.14 % 70.24%
PEMS (Cuturi, 2011) 66.47 % 64.27 % 64.921 %

solutions for small and shallow SPNs, but not deep SPNs, which suggests that it
suffers from the gradient vanishing problem.

We explored the convergence speeds for EBW and discGD on the training
data. We ran every algorithm for 20 epochs. Figure 6 shows the convergence
speed and performance for both algorithms. Both algorithms take the same time
per epoch. The figure shows that EBW converges faster to a better solution than
discGD. Furthermore, discGD struggles to achieve good results consistently as we
can see in the Activity Recognition plot where it did not converge to a solution in
20 epochs while EBW was able to converge after a few epochs.

5.2. EBW for Problems with Missing Features
Missing features is a problem that commonly happens in wearable devices

where sensors can fail frequently. SPNs can naturally handle missing features by
summing out the corresponding unobserved variables when doing inference. We
show the robustness of SPNs trained using EBW in the absence of some features.
We compare the performance of SPNs to SVMs and Neural Networks with mean
imputation.

We randomly set 50% of the features for each instance to be missing, SPNs can
handle such missing features by summing/integrating out the leaf distributions.
Since SVMs and NNs need values for all features, we set the missing features to
their average. For SVMs, a polynomial kernel was used and the penalty constant
was tuned for best performance. For NNs, we limited the number of parameters
to be equal to the number of parameters in SPNs. We used neural networks with
two hidden layers and rectified linear units (ReLU) in each layer. We set the
width of each layer such that the number of parameters for the NNs is the same
as the SPNs. We used TensorFlow to build and train NNs. We set the number of

23

0 10 20

0.7

0.8

0.9

A
cc

ur
ac

y
Banknote

EBW
discGD

0 10 20

0.7

0.8

0.9

Voice

EBW
discGD

0 10 20
0.99

0.99

1

1

Credit Card

EBW
discGD

0 10 20

0.85

0.9

0.95

1

epochs

A
cc

ur
ac

y

Breast Cancer

EBW
discGD

0 10 20
20
40
60
80

100

epochs

Sensorless Drive

EBW
discGD

0 10 20

0.6

0.8

1

epochs

Activity Recognition

EBW
discGD

Figure 6: Accuracies on training data versus number of epochs for EBW and discriminative GD
algorithms. The time per epoch is the same for both algorithms.

epochs to 20. Table 5 shows that EBW-trained SPNs are consistently more robust
to missing features than both SVMs and NNs with mean imputation.

Note that several other techniques much more complicated than mean impu-
tation have been proposed in the literature for neural networks and SVMs. For in-
stance, it is possible to deal with missing features in kernel methods in a principled
way by modifying the loss function to take into account the uncertainty induced
by the missing features, however modeling assumptions are needed and the opti-
mization problem is changed (Pelckmans et al., 2005). Alternatively, one can also
deal with missing features by casting kernel methods as estimation problems in
exponential families, but this yields a more complex optimization problem (Smola
et al., 2005). Since neural networks do not have a natural way of handling missing
features, a preprocessing technique based on variational auto-encoders (Ivanov
et al., 2019) has been proposed to generate imputed values based on observed fea-
tures that can be fed to any classification technique that assumes complete data.
Another possibility is to model the partial inputs with a probability density func-
tion based on which the expected value of each missing feature can be fed to any
classifier. In the case of neural networks, the first layer must be modified to com-

24

Table 5: The test accuracies of EBW-trained SPNs, SVMs and NNs on seven datasets.
Algorithm EBW NN SVM
Dataset 0% 50% 0% 50% 0% 50%
Banknote 86.13% 64.90% 86.13% 62.04% 86.13% 54.74%
Voice 97.15% 88.60% 97.46% 88.60% 96.20% 77.53%
Credit Card 99.92% 99.80% 99.87% 99.80% 99.96% 99.73%
Breast Cancer 96.24% 89.28% 94.60% 83.92% 94.64% 87.50%
Sensorless Drive 99.44% 52.03% 96.03% 47.90% 75.50% 12.40%
Fault Detection 60.45% 48.40% 50.01% 46.80% 57.04% 47.09%
Activity Recognition 90.53% 88.59% 93.82% 81.57% 96.23% 61.14%

pute the expectation of missing features with respect to the fitted density (Śmieja
et al., 2018). We caution the reader that our experiments do not imply that EBW
for SPNs is the state of the art to handle missing features. The main contribution
of the paper is a new discriminative learning technique for SPNs. We simply want
to highlight that EBW for SPNs can handle missing features without any change
and that it performs well in comparison to other techniques that do not require
any change or complex preprocesssing such as mean imputation. SPNs could be
combined with preprocessing techniques if desired.

5.3. Visualizing the Parameters Learned by EBW
This experiment aims at visualizing the parameters learned by both EBW and

generative EM by sampling different images from the learned SPNs. We chose
two classes, ’3’ and ’8’, with visual similarities from the MNIST dataset. We
trained an SPN using generative EM and a second SPN using discriminative EBW.
We sampled images from the resulting SPNs to analyze the effect of discriminative
EBW on the learned parameters.

As shown in Figure 7, the sampled images from the generatively trained SPN
resemble the appearance of digit ’3’ and digit ’8’. On the other hand, the sampled
images from the discriminatively trained SPN show the parts of the digits ’3’ and
’8’ that are discriminative. We know that the left part of digit ’8’ differentiates it
from digit ’3’, which is what was learned by the SPN.

6. Conclusion and Future Work

We described a framework to train SPNs and RSPNs discriminatively using
Extended Baum-Welch. We did so by formulating the conditional likelihood as

25

(a) Sampled images for digits ’3’ and ’8’ from generatively trained SPNs

(b) Sampled images for digits ’3’ and ’8’ from discriminatively trained SPNs

Figure 7: The above samples show the effect of training SPNs discriminatively. The sampled
images for digit ’8’ in the discriminative training case illustrate that the SPN for digit ’8’ was
tuned to focus on the parts that discriminate the digit ’8’ from the digit ’3’.

a rational function and applied Extended Baum-Welch to maximize this func-
tion. We derived the update formulas for cases where the leaf nodes are either
multinomial or univariate normal distributions. The experiments show that EBW
outperforms generative EM and discriminative gradient descent in a wide variety
of applications. We demonstrated the advantage of SPNs for classification tasks
when some features are missing. We also illustrated the effect of learning the
parameters of SPNs using EBW.

In the future, it would be interesting to extend this parameter learning algo-
rithm to classify sequential data where there is one label per time slice (e.g., part-
of-speech tagging, behaviour recognition). Also, it would be interesting to derive
a consistent structure learning algorithm for discriminative SPNs and RSPNs.

7. References

Adel, T., Balduzzi, D., Ghodsi, A., 2015. Learning the structure of sum-product
networks via an SVD-based algorithm, in: Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence.

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L., 2012. Human
activity recognition on smartphones using a multiclass hardware-friendly sup-
port vector machine, in: International workshop on ambient assisted living,
Springer. pp. 216–223.

Baum, L.E., Eagon, J.A., et al., 1967. An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model for
ecology. Bull. Amer. Math. Soc .

Baum, L.E., Petrie, T., Soules, G., Weiss, N., 1970. A maximization technique

26

occurring in the statistical analysis of probabilistic functions of Markov chains.
The annals of mathematical statistics .

Becker, K., 2016. Gender recognition by voice .
Bilmes, J., 2010. Dynamic graphical models. IEEE Signal Processing Magazine

27, 29–42.
Conaty, D., Maua, D., de Campos, C., 2017. Approximation complexity of max-

imum a posteriori inference in sum-product networks, in: Proceedings of The
33rd Conference on Uncertainty in Artificial Intelligence, AUAI.

Cuturi, M., 2011. Fast global alignment kernels, in: Proceedings of the 28th
international conference on machine learning (ICML-11), pp. 929–936.

Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.,
2014. Learned lessons in credit card fraud detection from a practitioner per-
spective, in: Expert systems with applications.

Darwiche, A., 2003. A differential approach to inference in Bayesian networks.
Journal of the ACM (JACM) 50, 280–305.

Desana, M., Schnörr, C., 2016. Expectation maximization for sum-product net-
works as exponential family mixture models. arXiv preprint arXiv:1604.07243
.

Dias, D., Madeo, R., Rocha, T., Biscaro, H., Peres, S., 2009. Hand movement
recognition for brazilian sign language: A study using distance-based neural
networks, in: International Joint Conference on Neural Networks.

Gens, R., Domingos, P., 2012. Discriminative learning of sum-product networks,
in: Advances in Neural Information Processing Systems, pp. 3239–3247.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gopalakrishnan, P.S., Kanevsky, D., Nádas, A., Nahamoo, D., 1991. An inequal-
ity for rational functions with applications to some statistical estimation prob-
lems. IEEE Transactions on Information Theory .

Hammami, N., Bedda, M., 2010. Improved tree model for arabic speech recogni-
tion, in: International Conference on Computer Science and Information Tech-
nology.

Hsu, W., Kalra, A., Poupart, P., 2017. Online structure learning for sum-product
networks with Gaussian leaves. arXiv preprint arXiv:1701.05265 .

Ivanov, O., Figurnov, M., Vetrov, D., 2019. Variational autoencoder with arbitrary
conditioning, in: International Conference on Learning Representations.

Jaini, P., Poupart, P., 2016. Online and distributed learning of Gaussian mixture
models by Bayesian moment matching. arXiv preprint arXiv:1609.05881 .

27

http://www.deeplearningbook.org

Jebara, T., Pentland, A., 1999. Maximum conditional likelihood via bound maxi-
mization and the CEM algorithm, in: Advances in neural information process-
ing systems, pp. 494–500.

Jebara, T., Pentland, A., 2001. On reversing jensen’s inequality, in: Advances in
Neural Information Processing Systems, pp. 231–237.

Kadous, M., 2002. Temporal Classification: Extending the Classification
Paradigm to Multivariate Time Series. Ph.D. thesis. The University of New
South Wales.

Kalra, A., Rashwan, A., Hsu, W.S., Poupart, P., Doshi, P., Trimponias, G., 2018.
Online structure learning for feed-forward and recurrent sum-product networks,
in: Advances in Neural Information Processing Systems, pp. 6944–6954.

Kanevsky, D., 2004. Extended baum transformations for general functions, in:
2004 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, IEEE. pp. I–821.

Kudo, M., Toyama, J., Shimbo, M., 1999. Multidimensional curve classification
using passing-through regions. Pattern Recognition Letters 20, 1103–1111.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning
applied to document recognition, in: Proceedings of the IEEE.

Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V., 2009. uwave:
Accelerometer-based personalized gesture recognition and its applications. Per-
vasive and Mobile Computing 5, 657–675.

Lohweg, V., Hoffmann, J., D’́orksen, H., Hildebrand, R., Gillich, E., Hofmann, J.,
Schaede, J., 2013a. Banknote authentication with mobile devices .

Lohweg, V., Paschke, F., Bayer, C., Bator, M., Mönks, U., Dicks, A., Enge-
Rosenblatt, O., 2013b. Sensorlose zustandsüberwachung an synchronmotoren,
in: Workshop Computational Intelligence.

Mei, J., Jiang, Y., Tu, K., 2018. Maximum a posteriori inference in sum-product
networks, in: Thirty-Second AAAI Conference on Artificial Intelligence.

Melibari, M., Poupart, P., Doshi, P., Trimponias, G., 2016. Dynamic sum product
networks for tractable inference on sequence data, in: Conference on Proba-
bilistic Graphical Models, pp. 345–355.

Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N., 1986. The multi-purpose in-
cremental learning system aq15 and its testing application to three medical do-
mains., in: The Fifth National Conference on Artificial Intelligence.

Molina, A., Natarajan, S., Kersting, K., 2017. Poisson sum-product networks:
A deep architecture for tractable multivariate poisson distributions, in: Thirty-
First AAAI Conference on Artificial Intelligence.

28

Molina, A., Vergari, A., Di Mauro, N., Natarajan, S., Esposito, F., Kersting, K.,
2018. Mixed sum-product networks: A deep architecture for hybrid domains,
in: The Thirty-Second AAAI Conference on Artificial Intelligence.

Murphy, K., 2002. Dynamic Bayesian Networks: Representation, Inference and
Learning. Ph.D. thesis. University of California, Berkeley.

Normandin, Y., 1991. Hidden Markov models, maximum mutual information es-
timation, and the speech recognition problem. Ph.D. thesis. McGill University,
Montreal.

Normandin, Y., Morgera, S.D., 1991. An improved mmie training algorithm
for speaker-independent, small vocabulary, continuous speech recognition,
in: [Proceedings] ICASSP 91: 1991 International Conference on Acoustics,
Speech, and Signal Processing, IEEE. pp. 537–540.

Olszewski, R., 2001. Generalized Feature Extraction for Structural Pattern Recog-
nition in Time-Series Data. Ph.D. thesis. Carnegie Mellon University.

Peharz, R., 2015. Foundations of Sum-Product Networks for Probabilistic Mod-
eling. Ph.D. thesis. Medical University of Graz.

Pelckmans, K., De Brabanter, J., Suykens, J.A., De Moor, B., 2005. Handling
missing values in support vector machine classifiers. Neural Networks 18, 684–
692.

Pernkopf, F., Wohlmayr, M., 2010. Large Margin Learning of Bayesian Classifiers
Based on Gaussian Mixture Models. Springer Berlin Heidelberg.

Poon, H., Domingos, P., 2011. Sum-product networks: a new deep architecture,
in: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, AUAI Press. pp. 337–346.

Rashwan, A., Zhao, H., Poupart, P., 2016. Online and distributed bayesian mo-
ment matching for parameter learning in sum-product networks, in: Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statis-
tics, pp. 1469–1477.

Rooshenas, A., Lowd, D., 2014. Learning sum-product networks with direct and
indirect variable interactions, in: International Conference on Machine Learn-
ing, pp. 710–718.

Salojärvi, J., Puolamäki, K., Kaski, S., 2005. Expectation maximization algo-
rithms for conditional likelihoods, in: Proceedings of the 22nd international
conference on Machine learning, ACM. pp. 752–759.

Śmieja, M., Struski, Ł., Tabor, J., Zieliński, B., Spurek, P., 2018. Processing of
missing data by neural networks, in: Advances in Neural Information Process-
ing Systems, pp. 2719–2729.

29

Smola, A.J., Vishwanathan, S., Hofmann, T., 2005. Kernel methods for missing
variables., in: the Tenth Workshop on Artificial Intelligence and Statistics.

Williams, B.H., Toussaint, M., Storkey, A.J., 2006. Extracting motion primitives
from natural handwriting data, in: International Conference on Artificial Neural
Networks, Springer. pp. 634–643.

Zhao, H., Adel, T., Gordon, G., Amos, B., 2016a. Collapsed variational inference
for sum-product networks, in: International Conference on Machine Learning,
pp. 1310–1318.

Zhao, H., Melibari, M., Poupart, P., 2015. On the relationship between sum-
product networks and Bayesian networks, in: International Conference on Ma-
chine Learning, pp. 116–124.

Zhao, H., Poupart, P., Gordon, G.J., 2016b. A unified approach for learning the
parameters of sum-product networks, in: Advances in neural information pro-
cessing systems, pp. 433–441.

30

	Introduction
	Background
	Sum-Product Networks
	Recurrent Sum-Product Network
	Extended Baum-Welch Algorithm

	Discriminative learning for Sum-Product Networks
	Discriminative Learning for SPNs Using Gradient Descent
	Discriminative Learning for SPNs using Extended Baum-Welch

	Discriminative learning for Recurrent Sum-Product Networks
	Discriminative Learning for RSPNs Using Gradient Descent
	Discriminative Learning for RSPNs Using Extended Baum-Welch

	Experiments
	EBW versus Other Parameter Learning Algorithms
	EBW for Problems with Missing Features
	Visualizing the Parameters Learned by EBW

	Conclusion and Future Work
	References

