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ABSTRACT
Understanding and debugging the training performance of deep neural networks (DNNs) is a difficult endeavor
because it depends on many factors such as: (i) the compute utilization of the underlying hardware, (ii) memory
capacity constraints, and (iii) the network bandwidth (for distributed training). To make matters worse, the lack
of domain specific tools has made it difficult for non-experts to navigate this performance landscape. To help
bridge this gap, we developed several DNN-focused performance analysis tools as a part of our work on the
TBD Suitea,b—a memory profiler, network profiler, and a workflow for analyzing the computational performance
characteristics associated with DNN training. In this demonstration, SysML’19 attendees will learn how to use
these tools to diagnose performance problems and discover opportunities for performance improvements when
training their models.

1 INTRODUCTION

As deep neural networks (DNNs) have become more widely
used, there has been increasing interest in being able to per-
form DNN training efficiently both on a single accelerator
(e.g., GPU or TPU) and in distributed configurations (both
multiple machines and multiple accelerators per machine).
However understanding and debugging DNN training per-
formance is a difficult endeavor because it depends on many
factors such as: (i) the compute utilization of the underlying
hardware, (ii) memory capacity constraints, and (iii) the net-
work bandwidth (for distributed training). To make matters
worse, the lack of domain specific tools has made it difficult
for non-experts to navigate this performance landscape.

To help bridge this gap we developed and open sourceda

several DNN-focused performance analysis tools as a part
of our work on the TBD Suiteb (Zhu et al., 2018). We
developed a memory profilerc, network profiler (Jayarajan
et al., 2019), and a workflow for analyzing the computa-
tional performance characteristics associated with DNN
training. These tools and workflows are aimed at helping
deep learning researchers and practitioners diagnose perfor-
mance problems and discover opportunities for performance
improvements in their DNNs. For example, we will show
how our tools can be used to discover the training throughput
differences between distinct models and how these insights
ultimately lead to different optimization strategies. Overall,
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SysML’19 attendees will learn about our performance analy-
sis workflow and will learn how they can use the TBD tools
to uncover performance insights within their own models.

2 TBD SUITE OVERVIEW

The TBD Suite is a collection of nine DNN benchmarks
and a set of performance analysis tools for a number of
DNN frameworks including TensorFlow (Abadi et al., 2016),
MXNet (Chen et al., 2016), and PyTorch (Paszke et al.,
2017). For this demonstration, we plan to show participants
how they can use TBD’s performance tools and TBD’s
MXNet memory and network profilers to perform training
performance analysis on their DNNs.

3 DEMONSTRATION

In our demonstration we will run through our compute pro-
filing workflow and will use the TBD memory and network
profilers to analyze the performance of two DNNs in three
distinct scenarios. We do not need any special equipment
other than Wi-Fi access for our demo.

Live Action. We will run the TBD tools live on the sce-
narios described in Sections 3.1, 3.2, and 3.3. Demo partici-
pants will see step-by-step how the tools are used. Partic-
ipants will also learn about our workflow in terms of how
we gather and analyze performance data with our tools.

Interactivity. For each scenario, participants will have
the opportunity to try using the tools for themselves using
our laptops. Participants will be able to modify the DNN
models themselves in each scenario and will be able to use
the TBD profilers on these modified models to see how their
training performance characteristics change.

https://github.com/tbd-ai
http://tbd-suite.ai
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TBD Suite: Benchmarking and Profiling Tools for DNNs

3.1 Scenario 1: Initial Analysis with Nvprof

Nvprof is a common tool used to gather performance metrics
and traces for applications that run on NVIDIA GPUs. With
DNNs, however, naively running nvprof during training can
lead to large output traces filled with many metrics—making
the traces difficult to analyze. In this scenario we will show
how to effectively use nvprof to gather performance insights
from DNN training workloads.

We will show how to instrument the training code for
ResNet-50 (He et al., 2016) on the ImageNet (Russakovsky
et al., 2015) dataset using MXNet. We will run nvprof to
demonstrate how to record runtime traces for a few training
iterations and we will show how to view and interpret the
outputted traces. Additionally, we will highlight and explain
some of the key performance metrics for evaluating the per-
formance of individual GPU kernels such as: (i) the floating
point utilization, and (ii) the kernel’s achieved occupancy.

3.2 Scenario 2: Performance Tuning with the
Computation and Memory Profiler

The architecture of a DNN, as well as the hyperparameters
chosen for training, can affect the training throughput. Fig-
ure 1 shows how the mini-batch size has implications on the
training throughput and memory footprint (Zhu et al., 2018).
In this scenario we will show how the TBD memory pro-
filer combined with our computational profiling workflow
can be used to tune a DNN model and its hyperparameters,
such as the mini-batch size, to use the underlying hardware
efficiently.

We will run the TBD memory profiler on ResNet-50
and a sequence to sequence (Seq2Seq) neural translation
model (Sutskever et al., 2014), both using MXNet on the
ImageNet and IWSLT’15 (Cettolo et al., 2015) datasets re-
spectively. We will also walk through our computational
analysis workflow to show how to gather performance met-
rics such as the GPU compute utilization. Using this infor-
mation, we will demonstrate how these insights can be used
to answer performance questions such as

• Does my DNN training process use my hardware ac-
celerator efficiently?

• Which layers or data structures contribute the most to
my DNN’s memory footprint?

• What are the best opportunities to improve training
performance?

3.3 Scenario 3: Distributed Training Analysis with
the Network Profiler

Data parallelism (DP) (Dean et al., 2012) is the most com-
monly used partitioning approach for distributed DNN train-
ing. Prior work has shown that the effectiveness of DP is
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Figure 1. The training throughput and memory breakdown for the
ResNet-50 and Seq2Seq models respectively.

closely tied to the network bandwidth among the machines
performing the training (Zhu et al., 2018). As a result, one
challenge in applying DP is determining whether the DNN
itself is well-suited for throughput speedups under a given
(usually fixed) network bandwidth. In this scenario we will
show how the TBD network profiler can be used to answer
these types of questions.

We will run the TBD network profiler on a cluster of ma-
chines training ResNet-50 on ImageNet using the MXNet
framework in a data parallel configuration. We will run
the profiler several times while varying the cluster’s net-
work bandwidth. The profiler will generate performance
traces that we will display—showing the communication
overhead associated with DP for each layer for different net-
work speeds (Jayarajan et al., 2019). We will demonstrate
how participants can use these traces to determine (i) if
there are layers that have a high communication overhead,
(ii) whether DP leads to training throughput improvements,
and if so, (iii) the minimum acceptable network bandwidth
that results in training throughput improvements.
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