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Unsupervised Learning 

• Suppose the data (i.e., x’s) belongs to different classes, but we don’t have the 
labels (i.e., we don’t have the y’s) 

• Won’t to characterize the different x’s somehow (e.g., “𝑥(𝑖) belongs to cluster 
B,” there are 3 different clusters of data) 

• Or to compute features that could be useful for classification (e.g., (1, 0, 0) if 
the x belongs to Cluster A, (0, 1, 0) if the x belongs to Cluster B, (0, 0, 1) if the 
x belongs to Cluster C)  

• If we can figure out how to compute those features using a large unlabelled dataset, 
we could then use them to perform supervised learning on a small labelled dataset 

• Like using the AlexNet features to classify faces 
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A Generative View 

To generate a datapoint: 

• Pick Cluster A with probability 𝑃𝐴, Cluster B with 
probability 𝑃𝐵, … 

• If we picked Cluster cl, sample random coordinates 
from 𝑁(𝜇𝑐𝑙 , Σ𝑐𝑙) 
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A Generative View 

• If the data is well-described as several “clouds” of 
points, we can generate a datapoint that looks like 
it was sampled from the training set by picking a 
cloud and then picking a coordinate from the cloud. 

• “Clouds” can be conveniently described as 
multivariate Gaussians 
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Mixture of Gaussians 

• 𝑃 𝑥 𝜋, 𝜇, Σ =  𝑃 𝑥 𝜇, Σ, 𝑐𝑙 𝑃(𝑐𝑙|𝜋) 𝑐𝑙 by the law 
of total probability  
• Weighted sum of the likelihoods for all the clusters, 

weighted by the probabilities of the clusters 

• 𝑃 𝑥 𝜋, 𝜇, Σ =  𝑃 𝑥 𝜇, Σ, 𝑐𝑙 𝑃(𝑐𝑙|𝜋) 𝑐𝑙 = 

= 𝑃 𝑥 𝜇𝑐𝑙 , Σ𝑐𝑙 𝜋𝑐𝑙
𝑐𝑙
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Learning a Mixture of Gaussians 

• Let 𝑧(𝑖) by the cluster to which point i is assigned 

• If we knew all the 𝑧(𝑖), we could learn the 
Gaussians one-by-one. But we don’t. Instead, we 
can try to estimate 

𝑤𝑐𝑙
𝑖
= 𝑝 𝑧 𝑖 = 𝑐𝑙 𝑥 𝑖 , 𝜋, 𝜇, Σ =

P x 𝑖 𝜇𝑐𝑙 , Σ𝑐𝑙 𝜋𝑐𝑙

𝑃(𝑥 𝑖 |𝜋, 𝜇, Σ)
∝ P x 𝑖 𝜇𝑐𝑙 , Σ𝑐𝑙 𝜋𝑐𝑙 

• But we don’t know 𝜇, Σ, 𝜋 either! But if we estimate 
the z’s, it’s easy to estimate 𝜇, Σ, 𝜋. 
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Learning a Mixture of Gaussians 

• E-step: 

• Want to estimate the cluster assignments 𝑧(𝑖).  

 
𝜙𝑐𝑙
𝑖
= P x 𝑖 𝜇𝑐𝑙 , Σ𝑐𝑙 𝜋𝑐𝑙 

 

𝑤𝑐𝑙
𝑖
= 𝑝 𝑧 𝑖 = 𝑐𝑙 𝑥 𝑖 , 𝜋, 𝜇, Σ =

P x 𝑖 𝜇𝑐𝑙 , Σ𝑐𝑙 𝜋𝑐𝑙

𝑃(𝑥 𝑖 |𝜋, 𝜇, Σ)
∝ 𝜙𝑐𝑙

𝑖  

𝑤𝑐𝑙
𝑖
=
𝜙𝑐𝑙
(𝑖)

 𝜙𝑐𝑙′
(𝑖)

𝑐𝑙′
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Learning a Mixture of Gaussians 

• M-step: Assume probabilistic cluster assignments 
were done 

   𝜋𝑐𝑙 =
1

𝑚
 𝑤𝑐𝑙

(𝑖)
𝑖  

 

𝜇𝑐𝑙 =
 𝑤𝑐𝑙

(𝑖)
𝑥(𝑖)𝑖

 𝑤𝑐𝑙
(𝑖)

𝑖

 

 

   Σ𝑐𝑙 =
 𝑤𝑐𝑙

𝑖
𝑥 𝑖 −𝜇𝑐𝑙 𝑥

𝑖 −𝜇𝑐𝑙
𝑇

𝑖

 𝑤𝑐𝑙
(𝑖)

𝑖
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Learning a Mixture of Gaussians 

• Start with an initial guess of 𝜋, 𝜇, Σ 

• Repeat: 
• Perform E-step to estimate the (probabilistic) cluster 

assignments of each point  
𝑤𝑐𝑙
𝑖
= 𝑝 𝑧 𝑖 = 𝑐𝑙 𝑥 𝑖 , 𝜋, 𝜇, Σ  

• Assume cluster assignments, and re-estimate 𝜋, 𝜇, Σ 
based on them 
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Learning a Mixture of Gaussians 

• Very easy to get stuck in local optima 

• Example: 
• A Gaussian whose variance is very small, and whose 

mean is very close to one point x 

• The E-step will only assign x to that Gaussian since the 
variance of the Gaussian is very small so the likelihood 
for any other point is small 

• The M-step will make the mean exactly equal to x, and 
make the variance even smaller 

• Solution: start with Gaussians with large variances 

10 



Learning a Mixture of Gaussians 

• How do we select the number of clusters? 

• Try different numbers of clusters, select the 
number of clusters that maximizes the probability 
density of the validation set 
• Imagine fitting a very small-variance Gaussian to every 

point in the training set: this would give a very small 
probability density to the validation set 
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K-means 

• K-means is an algorithm for finding centres of 
clusters 

• Simpler than Mixture of Gaussians, but the same 
idea 
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K-means 

• Assignment step: assign each datapoint 
to the closest cluster 

• Refitting step: Move each cluster 
center to the average of the points 
assigned to the cluster 
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Assignments 

Refitted 
means 
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Why K-means converges 

• Whenever an assignment is changed, the sum 
squared distances of datapoints from their assigned 
cluster centers is reduced 

• Whenever a cluster center is moved the sum 
squared distances of the datapoints from their 
currently assigned cluster centers is reduced. 

• If the assignments do not change in the assignment 
step, we have converged. 
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K-means: local optima 

• You could get back local 
optima with k-means 

• Try multiple starting 
points 
• How to evaluate how 

good the result is? 
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Speeding up Learning: MoG 

• Run k-means first, initialize the means of the 
Gaussians to be the means obtained using k-means 

16 


