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Unsupervised Learning

* Suppose the data (i.e., X's) belongs to different classes, but we don’t have the
labels (i.e., we don’t have the y’s)

« Won't to characterize the different x’s somehow (e.g., “x® belongs to cluster
B,” there are 3 different clusters of data)

* Or to compute features that could be useful for classification %e. Y (01, 0, 0) if
the x belongs to Cluster A, (0, 1, 0) if the x belongs to Cluster B, 50, , 1) if the
x belongs to Cluster C)

« If we can figure out how to compute those features using a large unlabelled dataset,
we could then use them to perform supervised learning on a small labelled dataset

 Like using the AlexNet features to classify faces



A Generative View

To generate a datapoint:

* Pick Cluster A with probability P,, Cluster B with
probability Pg, ...

* If we picked Cluster cl, sample random coordinates
from N(.ucb ch)



A Generative View

* If the data is well-described as several “clouds” of
points, we can generate a datapoint that looks like
it was sampled from the training set by picking a
cloud and then picking a coordinate from the cloud.

* “Clouds” can be conveniently described as
multivariate Gaussians



Mixture of Gaussians

e P(x|m,u,2) = Y P(x|w, Z, cl)P(cl|m) by the law
of total probability

* Weighted sum of the likelihoods for all the clusters,
weighted by the probabilities of the clusters

* P(x|m,u, Z) = 2 P(x|w, Z, cP(cl|m) =

= z P(xlﬂcl: ch)ncl
cl



Learning a Mixture of Gaussians

e Let z() by the cluster to which point i is assigned

e If we knew all the z(", we could learn the
Gaussians one-by-one. But we don’t. Instead, we

can try to estimate |
P(X(l) |.ucb ch)ncl
P(xD|m, u, %)

Wc(li) = p(z(i) = cl|x(i),7t, U, Z) = x P(x(i)|ucl,zcl)7tcl

* But we don’t know u, X, T either! But if we estimate
the z’s, it’s easy to estimate u, X, 7.



Learning a Mixture of Gaussians

* E-step:

e Want to estimate the cluster assignments z().

(l)g) = P(X(i)|ﬂclrzcl)ncl

P(X(i) |.ucl: ch)ncl
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Learning a Mixture of Gaussians

* M-step: Assume probabilistic cluster assignments
were done
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Learning a Mixture of Gaussians

e Start with an initial guess of , u, X

* Repeat:

e Perform E-step to estimate the (probabilistic) cluster
assignments of each point

() =p(zW = cl|x®,m, 1, 2)

e Assume cluster assignments, and re-estimate T, u, 2
based on them



Learning a Mixture of Gaussians

* Very easy to get stuck in local optima

* Example:

* A Gaussian whose variance is very small, and whose
mean is very close to one point x

* The E-step will only assign x to that Gaussian since the
variance of the Gaussian is very small so the likelihood
for any other point is small

* The M-step will make the mean exactly equal to x, and
make the variance even smaller

 Solution: start with Gaussians with large variances



Learning a Mixture of Gaussians

e How do we select the number of clusters?

* Try different numbers of clusters, select the
number of clusters that maximizes the probability
density of the validation set

* Imagine fitting a very small-variance Gaussian to every
point in the training set: this would give a very small
probability density to the validation set



K-means

e K-means is an algorithm for finding centres of
clusters

e Simpler than Mixture of Gaussians, but the same
idea



K-means

* Assignment step: assign each datapoint
to the closest cluster

* Refitting step: Move each cluster
center to the average of the points
assigned to the cluster

o Assignments

o Refitted
.O means
o . * 0

Slide from Geoff Hinton




Why K-means converges

* Whenever an assignment is changed, the sum
squared distances of datapoints from their assigned
cluster centers is reduced

* Whenever a cluster center is moved the sum
squared distances of the datapoints from their
currently assigned cluster centers is reduced.

* If the assignments do not change in the assignment
step, we have converged.

Slide from Geoff Hinton



K-means: local optima

* You could get back local
optima with k-means

* Try multiple starting .
points
o Yo
* How to evaluate how or

good the result is? o o

Slide from Geoff Hinton



Speeding up Learning: MoG

 Run k-means first, initialize the means of the
Gaussians to be the means obtained using k-means



