
How Neural Networks See (Part 1)

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

1

Two-Layer Neural Networks for
Image Classification

input vector

(flattened 28x28 image)

outputs (one per object)𝑜0 𝑜4 𝑜9

𝑥1

softmax

… …𝑥20 𝑥784

… …

… … … … … … …

10 objects, all resized to
28x28

(a.k.a. Multinomial Logistic Regression)

𝑊(1,1,0)

𝑏(1,0)

𝑊(1,784,9)

2

Reminder: Optimizing Neural
Networks
• Use Backpropagation to compute the gradient of the cost

function (e.g., the –log prob. of the answer) w.r.t. the W’s
and b’s for the whole training set, or for a mini-batch of
training examples

• Use gradient descent to find the W’s and b’s that minimize
the cost function

• When classifying images, compute the output of the
network for

x=the input image
and the W’s and b’s we found minimizing the cost
function

• Find which output is the largest, or interpret the outputs of
the Softmax as the probability estimates for the different
objects

3

What kind of W’s would minimize
the cost function?
• E.g., the task is the same as in Project 1: classify an

image as one of the 6 actors

4

Visualizing the W’s
𝑜4

𝑥1 … …𝑥20 𝑥784… … … … … … …

𝑊(1,1,4)

𝑏(1,4)

𝑊(1,784,4)

𝑊(1,20,4)

• For a given output unit, we have the strength of the connections from
each of the inputs

• To understand what the network is doing, we can think of the 𝑊(1,𝑖,4)

as an image

5

Bracco Vartan

Radcliffe Gilpin

Multinomial Logistic Regression with Early Stopping, 40 examples each
6

The Dot Product 𝑊(1,∗,𝑗) ⋅ 𝑥

• Note that the input to the unit 𝑜𝑗 is

𝑊(1,∗,𝑗) ⋅ 𝑥 + 𝑏(1,𝑗)

• For a vector 𝑥 of a given magnitude, 𝑊(1,∗,𝑗) ⋅ 𝑥 is
as large as possible when 𝑥 = 𝛼𝑊(1,∗,𝑗)

• I.e., when 𝑥 and 𝑊(1,∗,𝑗) point in the same direction
• The dot product 𝑢 ⋅ 𝑣 is the length of the projection of 𝑢

onto 𝑣
• That means that 𝑜𝑗 is larger when 𝑥 looks like 𝑊(1,∗,𝑗),

viewed as images
• (Note: it also means we should make sure all our input x’s are

of similar magnitudes)
• Why?

7

Aside: all the input x’s should have
the same magnitude
• If x(1) = 𝛼𝑥(2), they are basically the same image,

just with different contrast and maximum
brightness

• The output of the neural network for 𝑥1 and 𝑥2
should be the same

• Solution: always standartize any input x before
putting it in the dataset
• See optimization slides

8

Neural Networks with Hidden Layers

input vector (flattened 28x28

image)

hidden layer (300

hidden units)

outputs (one per object)
𝑜0 𝑜4 𝑜9

ℎ1 ℎ100

𝑥1

softmax

… …

… … … …

𝑥20 𝑥784

ℎ300

… …

𝑊0

𝑊1

9

Understanding Hidden Layers

• Can visualize 𝑊0 like before

• But what does it mean for the input to e.g. ℎ5 to be
high?
• Depends on how ℎ5 is connected to the output layer!

𝑜0 𝑜4 𝑜9

ℎ1 ℎ100

𝑥1 … …

… … … …

𝑥20 𝑥784

ℎ300

… …

𝑊0

𝑊1

10

act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized 11

300 hidden units, 6 actors, 40 examples each, L1-penalized 12

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

13

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

14

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

15

Hidden Layer Units as Features

• Once we train the neural network, the values units in the
hidden layer should be useful for computing the output
units.

• The weights 𝑊0 between the input layer and the hidden
layer are such that the hidden units are useful

• Think of the hidden units as “features” of the data –
summaries of the data that are useful for computing the
outputs

• In networks with no hidden layer, we simply compute as
many features as there are outputs
• So the “features” should look like the inputs that we are looking for

• (Recall the XOR example: we computed the feature “x1>.5”
and the feature “x2>.5” using hidden units)

16

Overfitting with a hidden layer

17300 units + heavy-duty optimization

