Support Vector Machines and Kernels

CMU machine learning group members

CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang

Supervised Learning

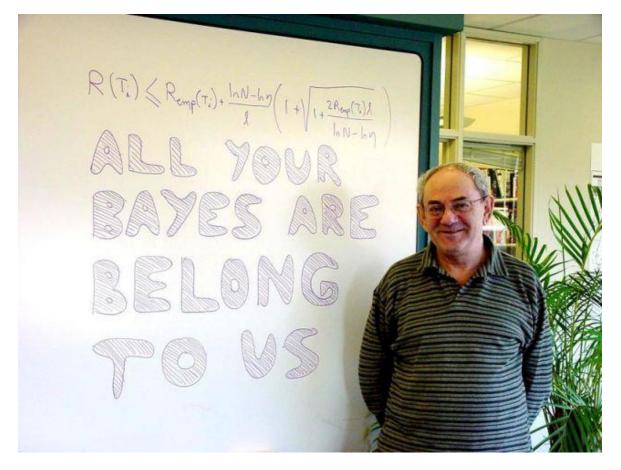
- Want to figure out the parameter of h_θ such that h_θ(x) = y for unseen data (x, y)
- Overfitting: finding a θ that corresponds to the peculiarities of the training set rather than to genuine patterns in the data
 - Definition: there exists a θ' such that *TrainPerformance*(θ') < *TrainPerformance*(θ) *Performance*(θ') > *Performance*(θ)
 - $Performance(\theta')$ is the performance of h_{θ} on all possible data (of which the training set is just a small subset)
 - Can't overfit on a training set that contains all the possible data!

Strategy so far to avoid overfitting

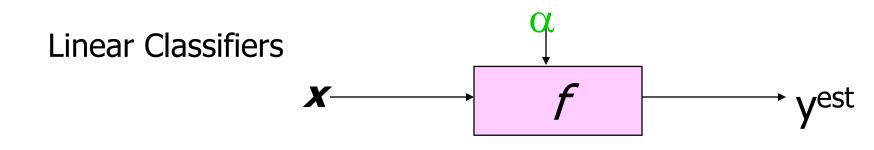
- Constrain the θ
 - Regularization, early stopping
- Constrain the h_{θ}
 - Make the neural network small
 - Don't compute too many features of the input *x*

Support Vector Machines (SVMs)

- Idea: select an h_{θ} that separates the data with the *largest margin*
 - Hope: this will make h_{θ} more generalizable
- Idea: apply the *kernel trick* to be able to compute lots of features of the data, and apply SVMs to avoid overfitting
- History
 - SVMs: Vladimir Vapnik and Alexey Chervoninkis in 1963
 - Kernels and SVMs: Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik in 1992
 - Soft margins: Corinna Cortes and Vladimir Vapnik, 1993
- Applied in practice to classify text, images, etc.

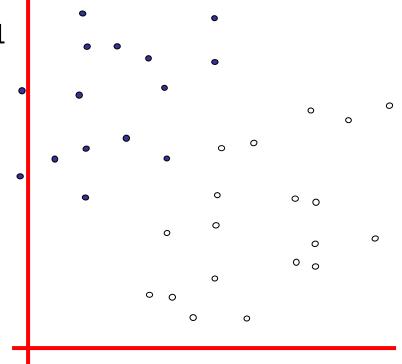


Vladimir Vapnik and his theoretical upper bound on the test error (not covered \circledast)

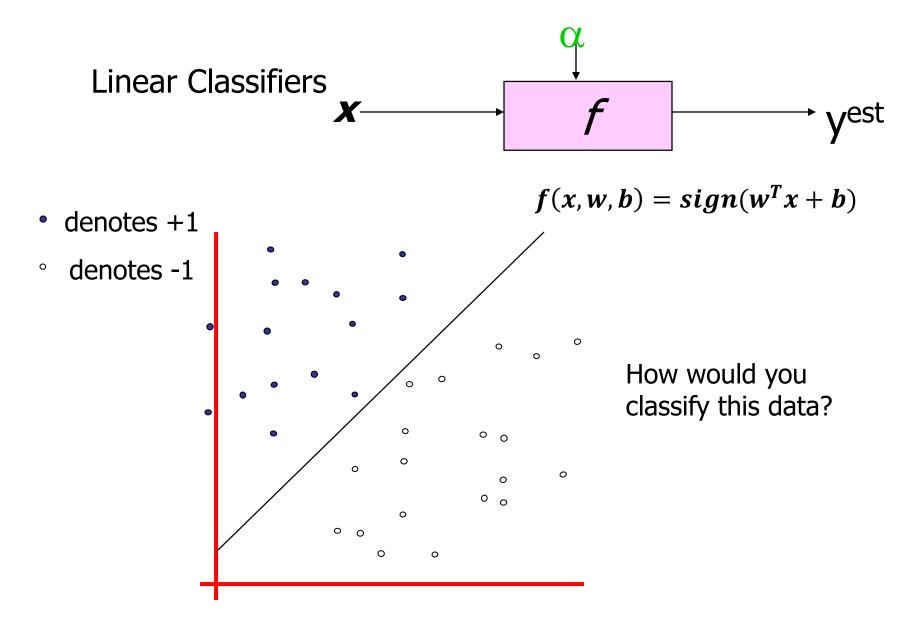


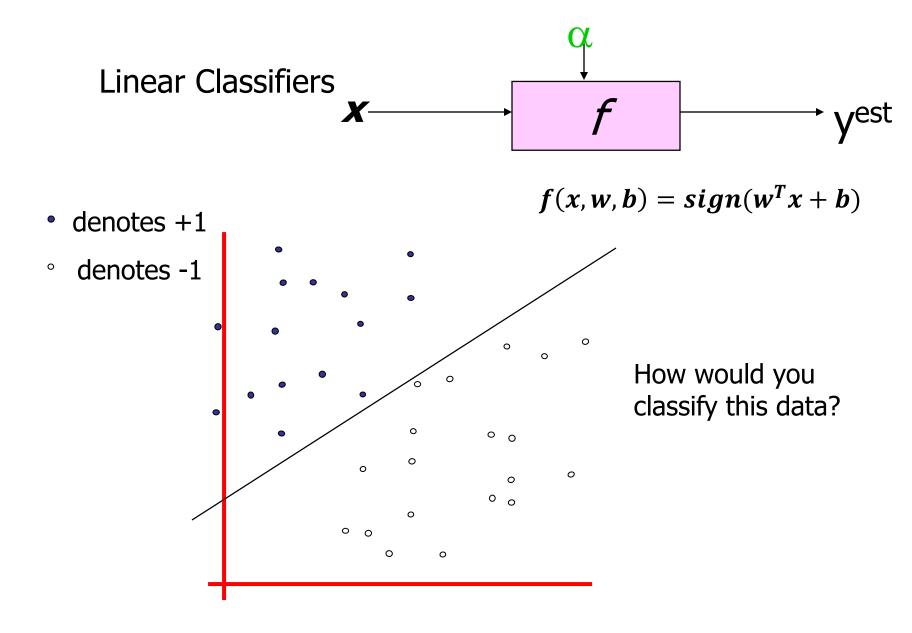
 $f(x, w, b) = sign(w^T x + b)$

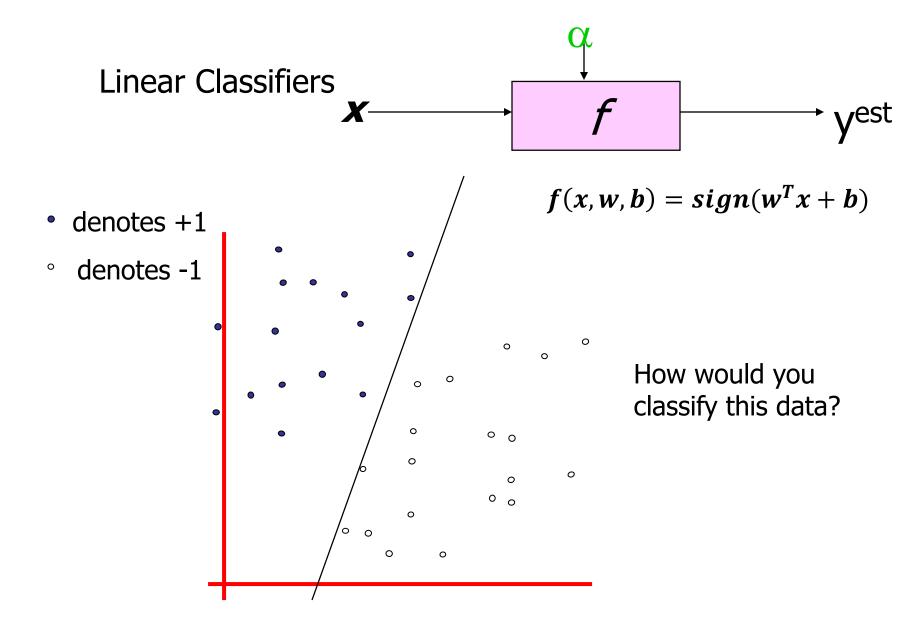
- denotes +1
- ° denotes -1

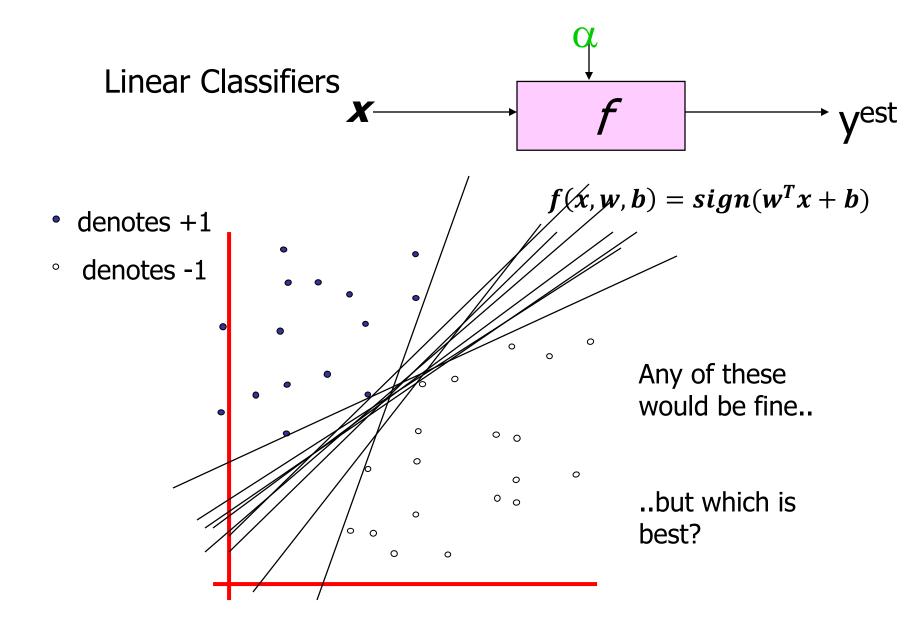


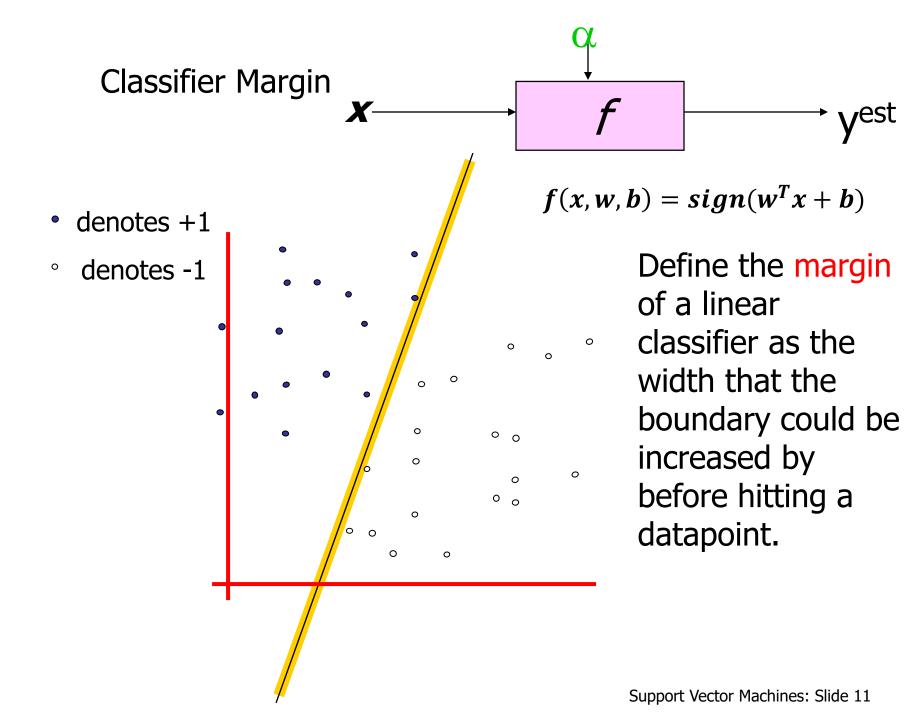
How would you classify this data?

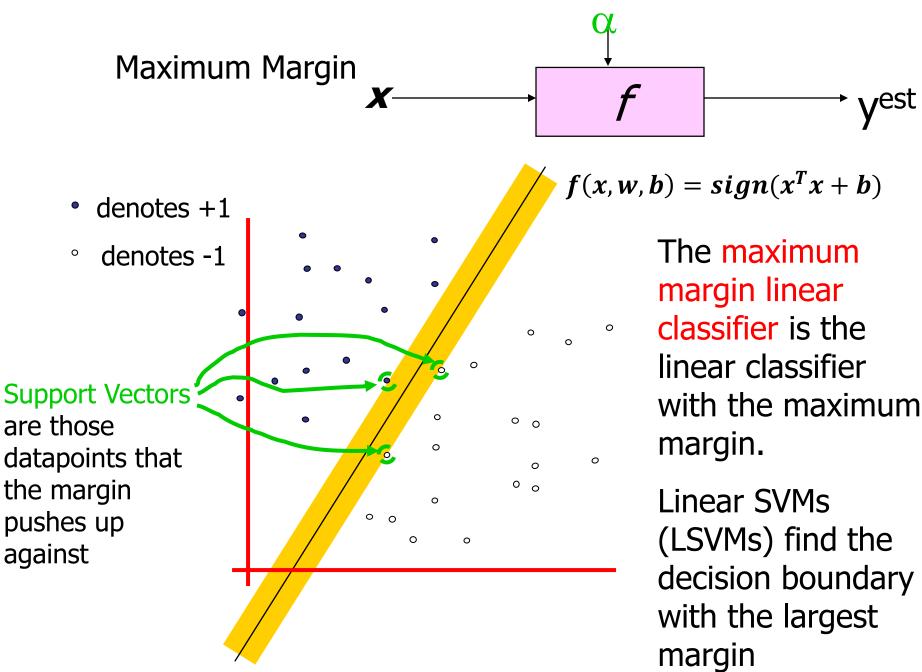








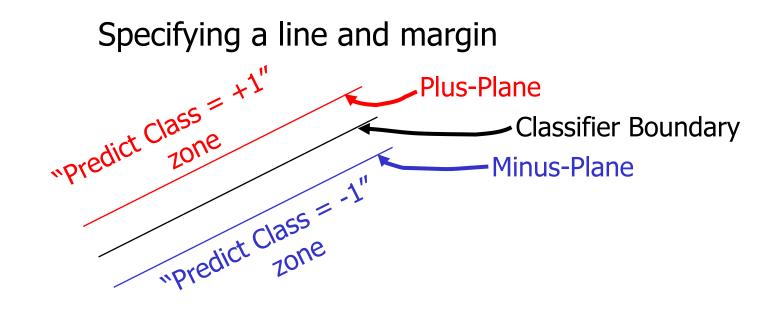




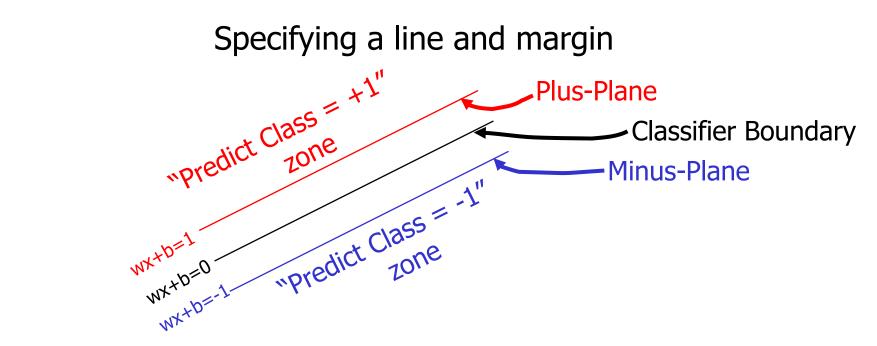
Support Vector Machines: Slide 12

Why Maximum Margin?

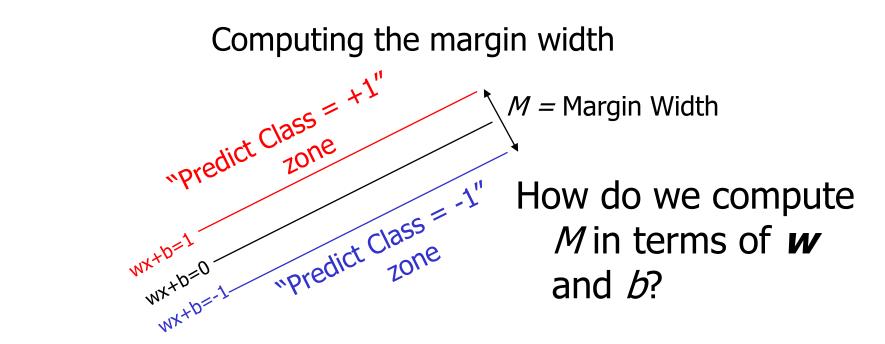
- Intuitively this feels safest.
- If we've made a small error in the location of the boundary (it's been jolted in its perpendicular direction) this gives us least chance of causing a misclassification.
- Empirically it works very very well.
- It can be mathematically shown that in some settings this will have the best validation error



- How do we represent this mathematically?
- ...in *m* input dimensions?



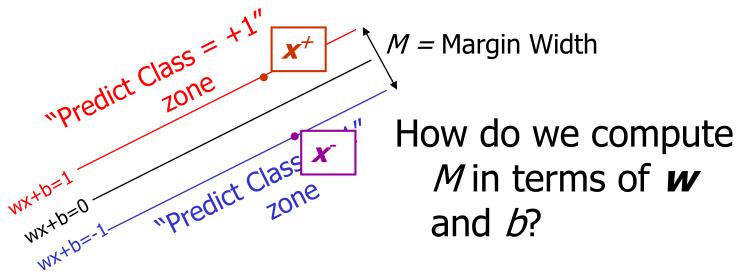
- Plus-plane = $\{x: w^T x + b = +1\}$
- Minus-plane = $\{x: w^T x + b = -1\}$
 - Classify as.. +1 -1 Universe explodes if $w^T x + b \ge 1$ $w^T x + b \le -1$ $w^T x + b \le -1$



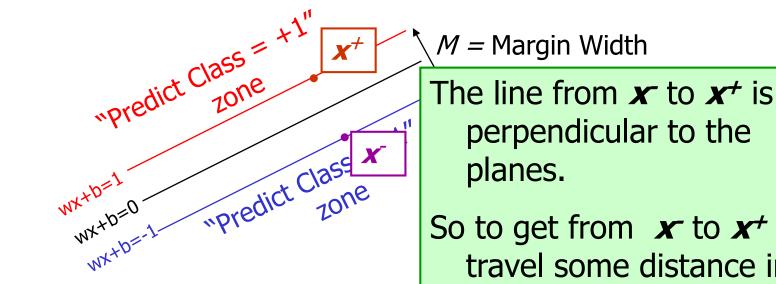
- Plus-plane = $\{x: w^T x + b = 1\}$
- Minus-plane = $\{x: w^T x + b = -1\}$

The vector **w** is perpendicular to the Plus-plane

- The vector w is in general perpendicular to the plane $w^T x = 0$
 - $\{x: w^T x = 0\}$ is the set of vectors such that are perpendicular to w.
 - $w^T x = c$ is just $w^T x = 0$, shifted



- Plus-plane = $\{x: w^T x + b = 1\}$
- Minus-plane = $\{x: w^T x + b = -1\}$
- The vector **w** is perpendicular to the Plus Plane
- Let **x**⁻ be any point on the minus plane
- Let x⁺ be the closest plus-plane-point to x⁻.
- Claim: $\mathbf{x}^+ = \mathbf{x}^- + \lambda \mathbf{w}$ for some value of λ . Why?



Plus-plane = $\{x: w^T x + b = 1\}$

- Minus-plane = $\{x: w^T x + b = -1\}$
- The vector **w** is perpendicular to the Plus Plane
- Let **x** be any point on the minus plane
- Let \mathbf{x}^{\star} be the closest plus-plane-point to \mathbf{x}^{\star} .
- Claim: $\mathbf{x}^+ = \mathbf{x}^- + \lambda \mathbf{w}$ for some value of λ . Why?

perpendicular to the

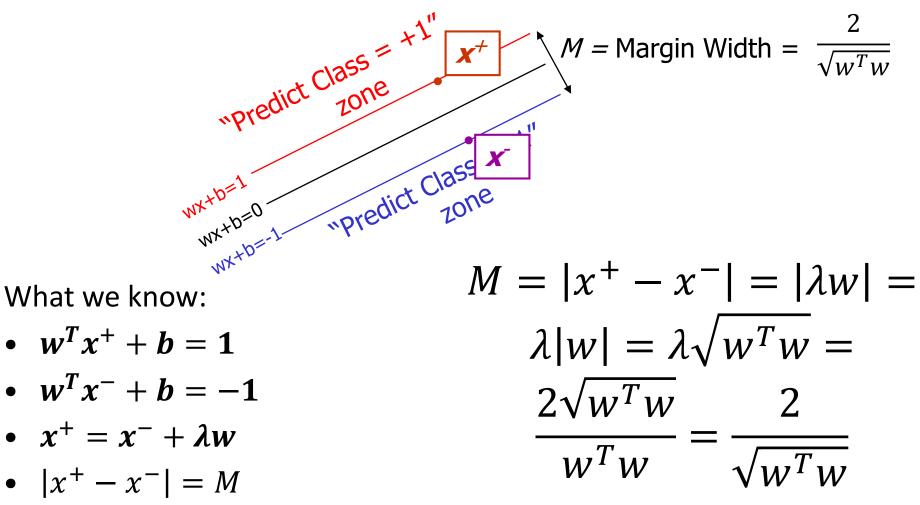
travel some distance in

planes.

direction w.

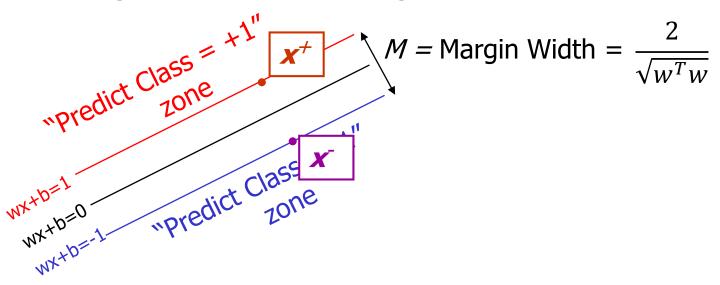


It's now easy to get *M* in terms of *w* and *b*



• $\lambda = \frac{2}{w^T w}$

Learning the Maximum Margin Classifier



Given a guess of **w** and b we can

- Compute whether all data points are in the correct half-planes
 - Compute $sign(w^T x + b)$
- Compute the width of the margin
- We now want to find the w and b that produce the maximum margin

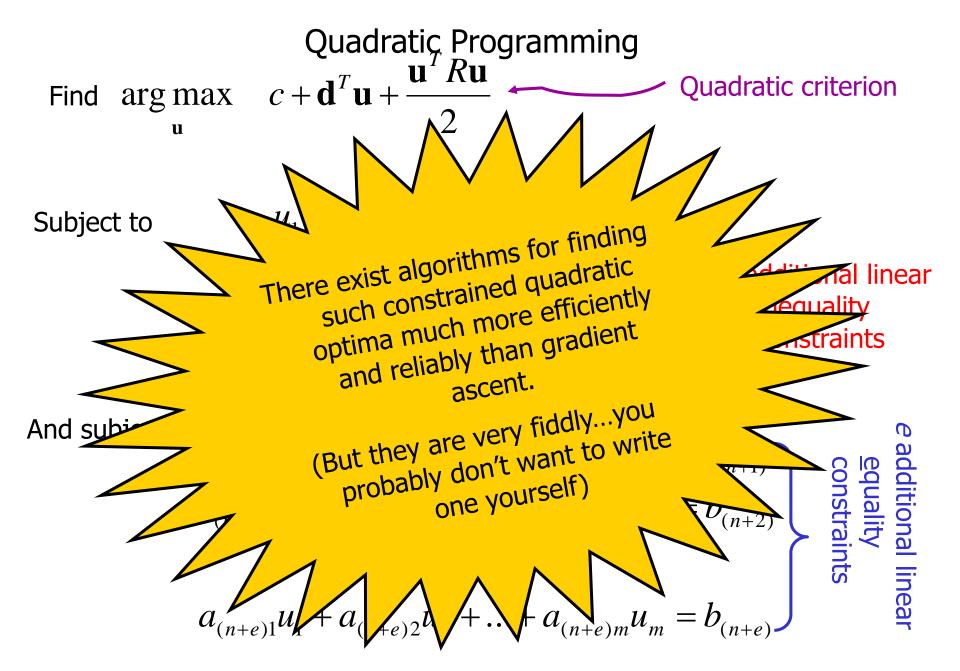
Learning via Quadratic Programming

 QP is a well-studied class of optimization algorithms to maximize a quadratic function of some real-valued variables subject to linear constraints.

Find
$$\underset{\mathbf{u}}{\operatorname{arg\,max}} c + \mathbf{d}^T \mathbf{u} + \frac{\mathbf{u}^T R \mathbf{u}}{2}$$
 Quadratic criterion

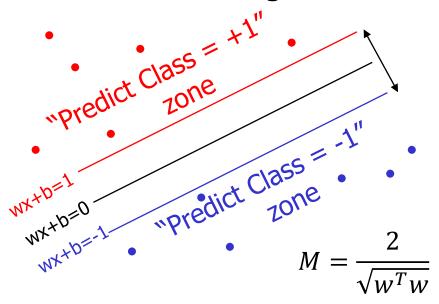
Subject to
$$a_{11}u_1 + a_{12}u_2 + ... + a_{1m}u_m \le b_1$$

 $a_{21}u_1 + a_{22}u_2 + ... + a_{2m}u_m \le b_2$
 \vdots
 $a_{n1}u_1 + a_{n2}u_2 + ... + a_{nm}u_m \le b_n$
And subject to
 $a_{(n+1)1}u_1 + a_{(n+1)2}u_2 + ... + a_{(n+1)m}u_m = b_{(n+1)}$
 $a_{(n+2)1}u_1 + a_{(n+2)2}u_2 + ... + a_{(n+2)m}u_m = b_{(n+2)}$
 \vdots
 $a_{(n+e)1}u_1 + a_{(n+e)2}u_2 + ... + a_{(n+e)m}u_m = b_{(n+e)}$



Support Vector Machines: Slide 24

Learning the Maximum Margin Classifier



Given a guess of **w** , b we can

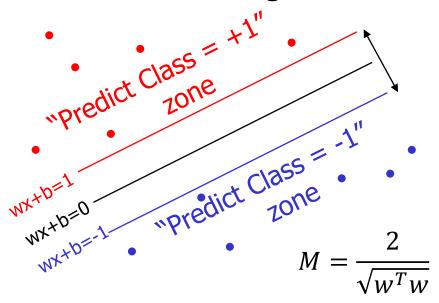
- Compute whether all data points are in the correct half-planes
- Compute the margin width

Assume *R* datapoints, each $(x^{(k)}, y^{(k)})$ where $y^{(k)} = +/-1$

What should our quadratic optimization criterion be? Minimize $w^T w$

How many constraints will we have? What should they be?

Learning the Maximum Margin Classifier



Given guess of \boldsymbol{w} , \boldsymbol{b} we can

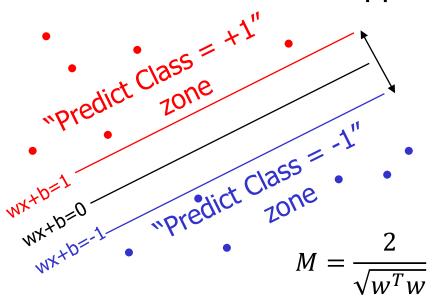
- Compute whether all data points are in the correct half-planes
- Compute the margin width

Assume *R* datapoints, each $(x^{(k)}, y^{(k)})$ where $y^{(k)} = +/-1$

What should our quadratic optimization criterion be? Minimize $w^T w$

How many constraints will we have? *R* What should they be? $w^T x^{(k)} + b \ge 1$ if $y^{(k)} = 1$ $w^T x^{(k)} + b \le -1$ if $y^{(k)} = -1$

Support Vectors

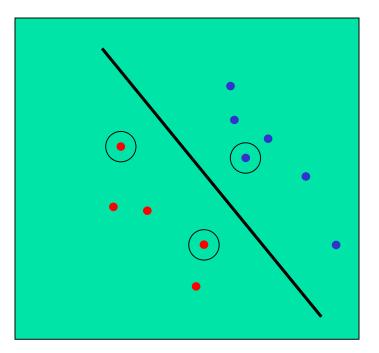


- x's s.t. $w^T x^{(k)} + b = 1$ lie on the line wx + b = 1
- x's s.t. $w^T x^{(k)} + b = -1$ lie on the line wx + b = -1
- Those x's define the w
 - Can ignore all other data, and the maximum-margin classifier will be the same

What should our quadratic optimization criterion be? Minimize $w^T w$

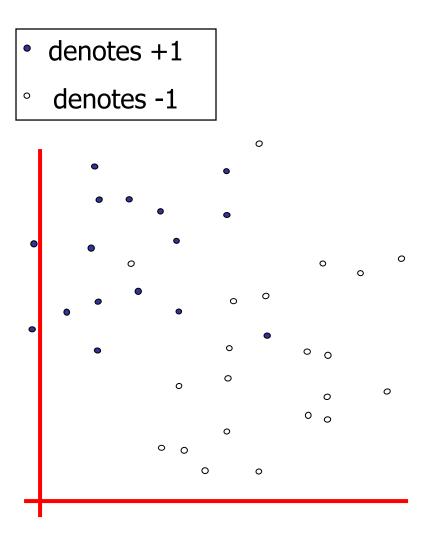
How many constraints will we have? *R* What should they be? $w^T x^{(k)} + b \ge 1$ if $y^{(k)} = 1$ $w^T x^{(k)} + b \le -1$ if $y^{(k)} = -1$

Support Vectors

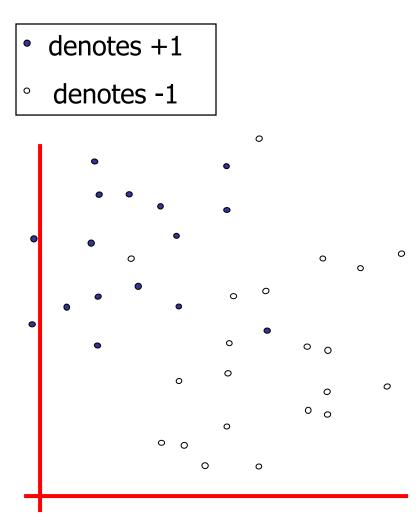


- Support vectors are the vectors that determine the separating hyperplane
- They lie on $w^T x + b = 1$ and $w^T x + b = -1$
- Other vectors in the training set don't matter for the decision boundary

Uh-oh! This is going to be a problem! What should we do?



Uh-oh!

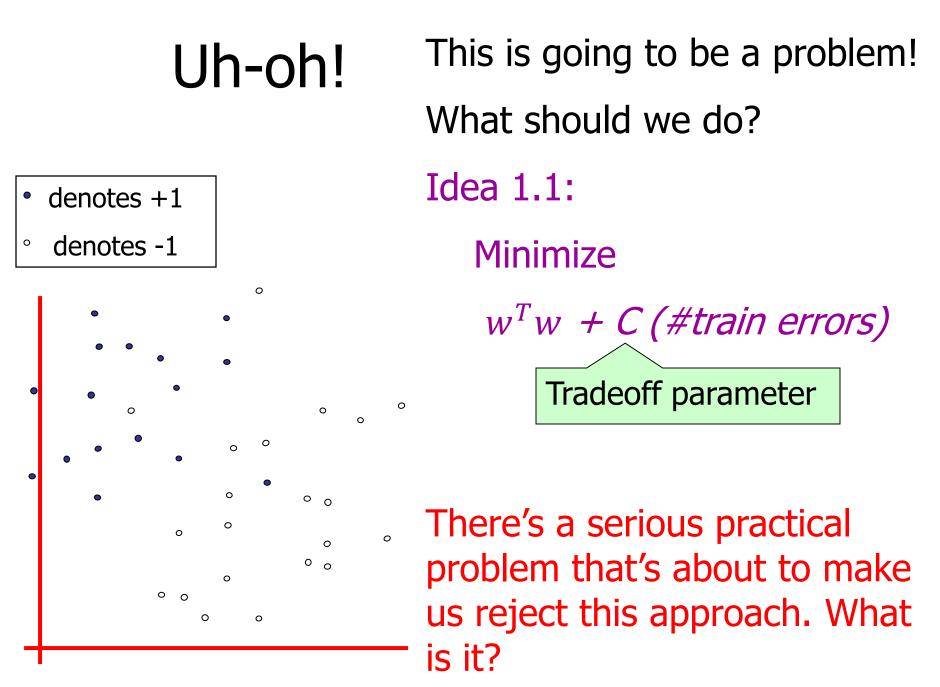


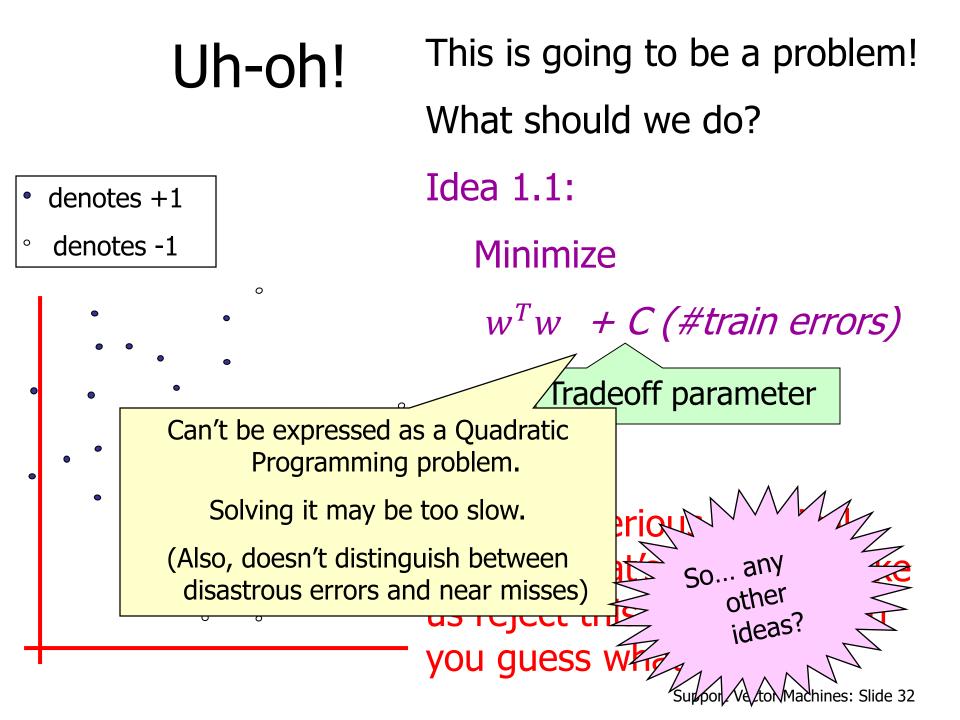
This is going to be a problem! What should we do?

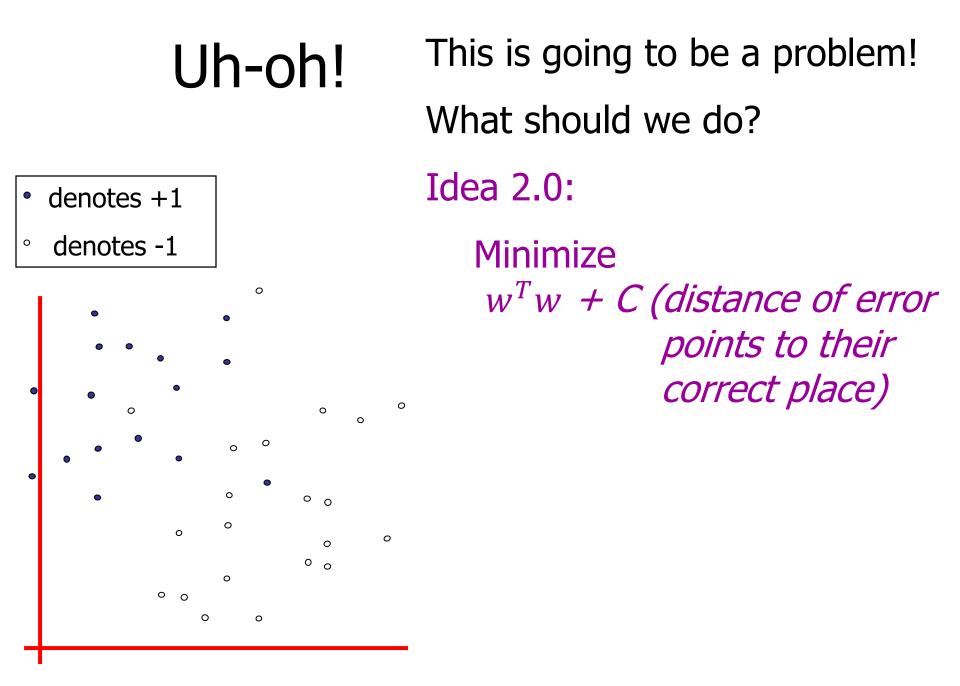
Idea 1:

Find minimum $w^T w$, while minimizing number of training set errors.

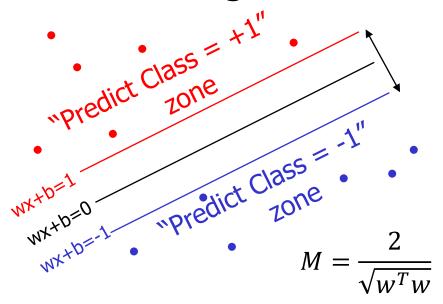
Problemette: Two things to minimize makes for an ill-defined optimization







Learning the Maximum Margin with Noise



Given guess of \boldsymbol{w} , \boldsymbol{b} we can

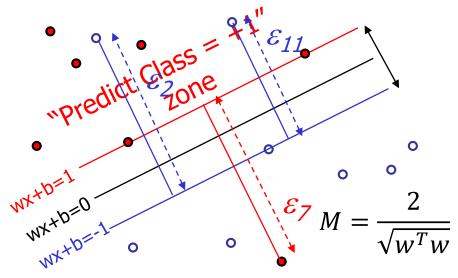
- Compute whether all data points are in the correct half-planes
- Compute the margin width

Assume *R* datapoints, each $(x^{(k)}, y^{(k)})$ where $y^{(k)} = +/-1$

What should our quadratic optimization criterion be?

How many constraints will we have? What should they be?

Learning the Maximum Margin with Noise



Given guess of \boldsymbol{w} , \boldsymbol{b} we can

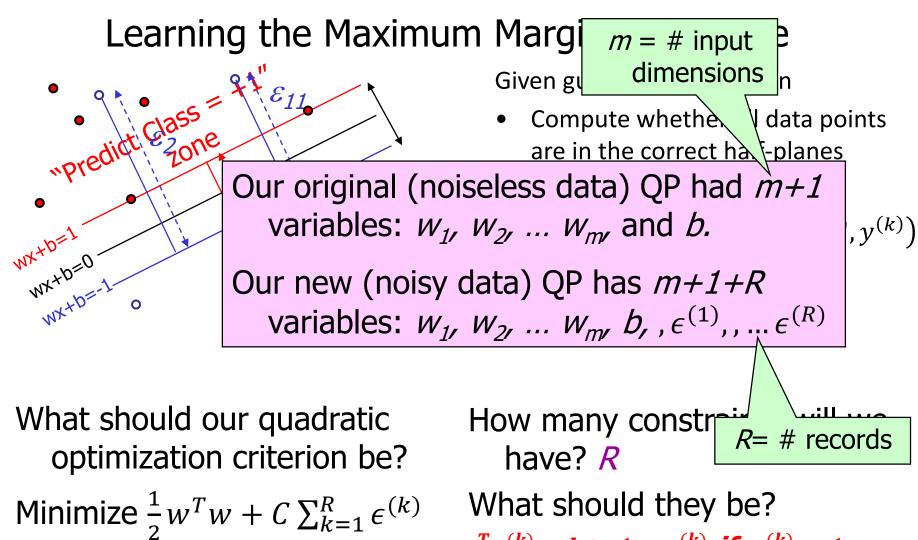
- Compute whether all data points are in the correct half-planes
- Compute the margin width

Assume R datapoints, each $(x^{(k)}, y^{(k)})$ where $y^{(k)} = +/-1$

What should our quadratic optimization criterion be? Minimize $\frac{1}{2}w^Tw + C\sum_{k=1}^R \epsilon^{(k)}$ The $\epsilon^{(k)}$'s are called "slack variables" The technique is called "soft margin"

How many constraints will we have? *R* What should they be? $w^T x^{(k)} + b \ge 1 - \epsilon^{(k)}$ if $y^{(k)} = 1$ $w^T x^{(k)} + b \le -1 + \epsilon^{(k)}$ if $y^{(k)} = -1$ $\epsilon^{(k)} \ge 0_r$ for all k

Support Vector Machines: Slide 35



 $w^T x^{(k)} + b \ge 1 - \epsilon^{(k)}$ if $y^{(k)} = 1$

 $w^T x^{(k)} + b \le -1 + \epsilon^{(k)}$ if $y^{(k)} = -1$

 $\epsilon^{(k)} \ge 0$, for all k

Support Vector Machines: Slide 36

Primal Formulation for SVM with slack variables

$$\begin{split} \min_{w,b} \frac{1}{2} ||w||^{2} + C \sum_{k} \epsilon^{(k)} \\ \text{s.t.:} \\ w^{T} x^{(k)} + b \geq 1 - \epsilon^{(k)} \text{ if } y^{(k)} = 1 \\ w^{T} x^{(k)} + b \leq -1 + \epsilon^{(k)} \text{ if } y^{(k)} = -1 \end{split} \qquad \begin{aligned} & \text{Equivalently:} \\ (w^{T} x^{(k)} + b) \leq -1 + \epsilon^{(k)} \text{ if } y^{(k)} = -1 \\ \epsilon^{(k)} \geq 0_{f} \text{ for all } k \end{aligned}$$

- Can solve using Quadratic Programming algorithms
- Know as the "primal formulation"

Solving the Primal Formulation with Gradient Descent

$$\min_{w,b}\frac{1}{2}||w||^2 + C\sum_k \epsilon^{(k)}$$

s.t.:

$$w^{T} x^{(k)} + b \ge 1 - \epsilon^{(k)} \text{ if } y^{(k)} = 1$$
$$w^{T} x^{(k)} + b \le -1 + \epsilon^{(k)} \text{ if } y^{(k)} = -1$$
$$\epsilon^{(k)} \ge 0, \text{ for all } k$$

Equivalently:
$$(w^T x^{(k)} + b)y^{(k)} + \epsilon^{(k)} \ge 1$$

• Convert this to

$$\min_{w,b} C \sum_{k} \max(0, 1 - y^{(k)} (w^T x^{(k)} + b)) + \frac{1}{2} ||w||^2$$

$$0 \text{ if } w^T x^{(k)} + b > 1 \text{ or } < -1 \text{ with the right } y^{(k)}$$

$$\epsilon^{(k)} \text{ otherwise}$$

Solving the Primal Formulation with Gradient Descent

Solve with gradient descent: ٠

than 1 a little

linear SVM

for logistic regression, but not for

$$\min_{w,b} C \sum_{k} \max(0, 1 - y^{(k)} (w^T x^{(k)} + b)) + \frac{1}{2} ||w||^2$$

- max(0, t) is not differentiable at 0, but there are ways to deal with this
- Compare to regularized logistic regression: $\min_{w,b} C \sum_{k} (y^{(k)} \log \sigma(w^T x^{(k)} + b) + (1 - y^{(k)}) (\log(1 - \sigma(w^T x^{(k)} + b)) + \lambda ||w||^2$

 \leftrightarrow

$$\min_{w,b} C \sum_{k} \log(1 + \exp(-(w^T x^{(k)} + b)y^{(k)})) + \lambda ||w||^2$$

Hinge loss doesn't reward
outputting more than 1
Log loss rewards outputting more
than 1 a little
All the training examples matter
-1 0 1 (w^T x^{(k)} + b)y^{(k)}

Support Vector Machines: Slide 39

Primal Formulation for SVM with slack variables (again)

$$\begin{split} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_k \epsilon^{(k)} \\ \text{s.t.:} \\ w^T x^{(k)} + b \ge 1 - \epsilon^{(k)} \text{ if } y^{(k)} = 1 \\ w^T x^{(k)} + b \le -1 + \epsilon^{(k)} \text{ if } y^{(k)} = -1 \end{split} \qquad \begin{aligned} & \text{Equivalently:} \\ (w^T x^{(k)} + b) \le -1 + \epsilon^{(k)} \text{ if } y^{(k)} = -1 \end{aligned} \qquad \begin{aligned} & \text{Equivalently:} \\ \epsilon^{(k)} \ge 0_f \text{ for all } k \end{aligned}$$

- Can solve using Quadratic Programming algorithms
- Can solve with flavours of gradient descent
- Both would be slow for high dimensional x's

Lagrange Multipliers

- Want to maximize f(x) subject to $g_1(x) = 0, g_2(x) = 0, ...$
 - E.g.: $f(x) = x_1 x_2 x_3$, $g_1(x) = xy + xz + yz 64 g_2(x) = x + y 5$
- $L(x, \alpha) = f(x) \alpha_1 g_1(x) \alpha_2 g_2(x) \cdots$
- The constrained minimum of f(x) will be a local optimum of $L(x, \alpha)$

Dual Formulation for SVM (no slack variables)

- Want to minimize $\frac{1}{2} ||w||^2$ subject to $(w^T x^{(k)} + b) y^{(k)} \ge 1$
- Use Lagrange multipliers to convert this to

•
$$L_p = \frac{1}{2} ||w||^2 - \sum_{k=1}^n \alpha_k (y^{(k)} (w^T x^{(k)} + b) - 1)$$

 $\min_{w,b} L_p$ subject to $\alpha_k \ge 0$, $\frac{\partial L_p}{\partial \alpha_k} = 0$ for all k

• We can show with calculus (but won't) that

$$\frac{\partial L_p}{\partial w_m} = 0, \frac{\partial L_p}{\partial b_n} = 0 \text{ for all } m, n \text{ means } w = \sum_k \alpha_k y^{(k)} x^{(k)}, \sum_k \alpha_k y^{(i)} = 0$$

• Substitute this in to get $||w||^2 = \{\sum_i \alpha_i y^{(i)} x^{(i)}\}^T \{\sum_j \alpha_j y^{(j)} x^{(j)}\} = \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$

Dual Formulation for SVM

 Can show (but won't) that we can solve the dual formulation instead of the primal formulation:

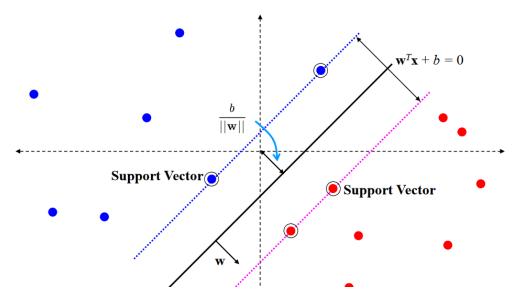
$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)} (x^{(j)} \cdot x^{(k)})$$

subject to $\alpha_k \ge 0$ for all k , $\sum_k \alpha_k y^{(k)} = 0$

- **Representer theorem** (from last slide): $w^* = \sum_k \alpha_k y^{(k)} x^{(k)}$
 - The optimal *w* is a linear combination of the *x*'s!
- We only need to compute $x^{(j)} \cdot x^{(k)}$ when optimizing and testing
 - Compute $h(x) = \sum_k \alpha_k y^{(k)} (x^{(k)} \cdot x) + b$
 - Will see why this is important soon
- When the w and x are high-dimensional, but there are few examples, it is more efficient to optimize with respect to the αs

Dual Formulation for SVM

- $h(x) = \sum_k \alpha_k y^{(k)} (x^{(k)} \cdot x) + b$
 - If $h(x) \ge 0$, predict y = 1
- Most $x^{(k)'s}$ don't influence the w so most $\alpha'_k s$ will be zero when we solve the optimization problem
- $x^{(k)}$ s.t. $\alpha_k \neq 0$ are the support vectors



Dual Formulation for SVM

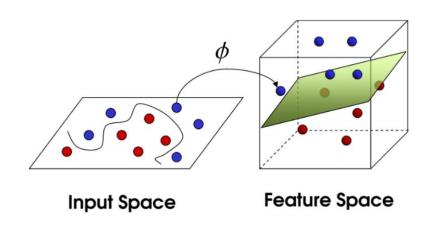
$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)} (x^{(j)} \cdot x^{(k)})$$

subject to $0 \le \alpha_k \le C$ for all k, $\sum_k \alpha_k y^{(k)} = 0$

- We are constraining α_k to be smaller than C
- Large C means a more complex model (and smaller training error)

Lifting x to higher dimensions

- We saw before that a lot of the time, data that is not linearly separable can be made separable if we compute nonlinear features of the data
 - Example: the activations of AlexNet
 - Example: compute the distance from *x* to every one of n examples to simulate 1-Nearest Neighbours
- Compute the features using $\phi(x)$
 - x is low-dimensional, $\phi(x)$ is high-dimensional



The Dual Formulation and the Kernel Trick

• We can sometimes get away with not having to compute ϕ by using a kernel function K

•
$$K(x^{(i)}, x^{(j)}) = \phi(x^{(i)}) \cdot \phi(x^{(j)})$$

- The *K* and ϕ have to correspond to each other
- Note that here, $\phi(x^{(i)})$ is a vector.
- The \cdot in $\phi(x^{(i)}) \cdot \phi(x^{(j)})$ represents the dot product

The Dual Formulation and the Kernel Trick

$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)} (x^{(j)} \cdot x^{(k)})$$

subject to $0 \le \alpha_k \le C$ for all $k, \sum_k \alpha_k y^{(k)} = 0$

Now, let's solve the problem when x is mapped to $\phi(x)$

$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)} (\phi(x^{(j)}) \cdot \phi(x^{(k)}))$$

subject to $0 \le \alpha_k \le C$ for all $k, \sum_k \alpha_k y^{(k)} = 0$
Equivalently,
$$K(x^{(i)}, x^{(j)}) = \phi(x^{(i)}) \cdot \phi(x^{(j)})$$

$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)} (K(x^{(j)}, x^{(k)}))$$

subject to $0 \le \alpha_k \le C$ for all $k, \sum_k \alpha_k y^{(k)} = 0$

Support Vector Machines: Slide 48

The Dual Formulation and the Kernel Trick

$$\max_{\alpha_k \ge 0} \sum_k \alpha_k - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y^{(j)} y^{(k)}(K(x^{(j)}, x^{(k)}))$$

subject to $0 \le \alpha_k \le C$ for all k, $\sum_k \alpha_k y^{(k)} = 0$

- We map x to a high-dimensional feature space, but only ever have to compute the kernel
 - Solves a computational problem
 - $\phi(x)$ could be infinite-dimensional

The Kernel Trick: example

- $K(a,b) = (a^T b)^3$ = $((a_1, a_2)^T (b_1, b_2))^3$
 - $= (a_1b_1 + a_2b_2)^3 \qquad \phi(b)$ = $a_1^3b_1^3 + 3a_1^2b_1^2a_2b_2 + 3a_1b_1a_2^2b_2^2 + a_2^3b_2^3$ = $(a_1^3, \sqrt{3}a_1^2a_2, \sqrt{3}a_1a_2^2, a_2^3) \cdot (b_1^3, \sqrt{3}b_1^2b, \sqrt{3}b_1b_2^2, b_2^3)$ = $\phi(a) \cdot \phi(b)$
 - Can specify *K* without explicitly writing down the ϕ !
 - Reminder: $h(x) = \sum_k \alpha_k y^{(k)} (x^{(k)} \cdot x) + b$
 - So: $h_K(x) = \sum_k \alpha_k y^{(k)} (\phi(x^{(k)}) \cdot \phi(x)) + b = \sum_k \alpha_k y^{(k)} (K(x^{(k)}, x)) + b$

Kernels

- To predict: compute $\sum_k \alpha_k y^{(k)} (K(x^{(k)}, x)) + b$
- Make sense to weight the $\alpha_k y^{(k)}$ more if $x^{(k)}$ and x are similar
- Polynomial kernel:

$$K(x^{(i)}, x^{(j)}) = (x^{(i)} \cdot x^{(j)} + 1)^d, d \ge 1$$

Gaussian kernel

$$K(x^{(i)}, x^{(j)}) = \exp\left(-\frac{\left|\left|x^{(i)} - x^{(j)}\right|\right|^2}{2\sigma^2}\right)$$

• Sigmoid kernel

$$K(x^{(i)}, x^{(j)}) = \tanh\left(\beta\left(x^{(i)^T}x^{(j)} + a\right)\right)$$

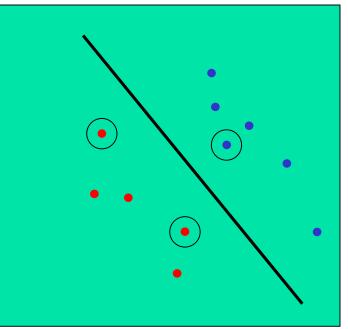
Kernels

- Mercer's Theorem: any "reasonable" kernel corresponds to some ϕ
- Polynomial kernels $(x^{(i)} \cdot x^{(j)} + 1)^d$ correspond to features spaces of size exponential in d
- The Gaussian kernel corresponds to a ϕ that maps x to an infinite-dimensional space

$$\begin{split} \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right) &= \sum_{j=0}^{\infty} \frac{(\mathbf{x}^\top \mathbf{x}')^j}{j!} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \exp\left(-\frac{1}{2}\|\mathbf{x}'\|^2\right) \\ &= \sum_{j=0}^{\infty} \sum_{\sum n_i = j} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \frac{x_1^{n_1} \cdots x_k^{n_k}}{\sqrt{n_1! \cdots n_k!}} \exp\left(-\frac{1}{2}\|\mathbf{x}'\|^2\right) \frac{x_1'^{n_1} \cdots x_k'^{n_k}}{\sqrt{n_1! \cdots n_k!}} \end{split}$$

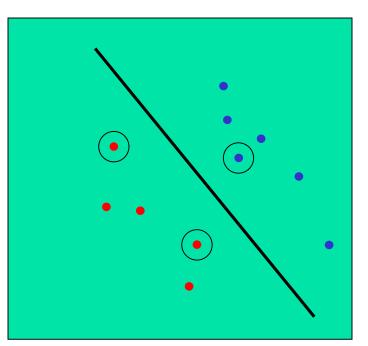
SVMs: Summary

- Find the maximum-margin linear classifier
 - Possibly map the inputs to a high-dimensional space first
 - Maximum-margin classifiers try to avoid overfitting
 - Can efficiently map to very high-dimensional spaces
- The maximum-margin classifier is defined by the *support vectors*
 - Support vectors are points in the training set
- Classify using $\sum_k \alpha_k y^{(k)} K(x, x^{(k)}) + b \ge 0$
- Can ignore non-support vectors
- When using soft margin, select *C* using cross-validation
- Select kernel by thinking about the data, or by cross-validation
 - What makes two x's "close"?



SVMs: Summary

- Kernels allow for very flexible hypotheses
 - But must choose kernel parameters
- Exact optimization methods available
 - Batch algorithm the entire training set needs to be in memory when learning
- Work well in practice
- Several good implementations available



What you need to know

- Maximum margin
- The primal formulation for SVMs
- Hinge loss vs. log-loss (Soft-margin SVMs vs. Logistic Regression)
- Getting from the Representer Theorem (slide 40) to prediction of new outputs in an SVM is we know the solution to the dual problem
- The kernel trick
- Why kernels that compute similarity make sense
- The intuition behind the prediction of new outputs
- SVMs work well in practice
- Don't need to know:
 - Anything involving Lagrange multipliers
 - Getting from the primal formulation to the dual formulation, even to the extent that we did that in class
 - How to solve QP problems