
CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Support Vector Machines and Kernels

CMU machine learning group members

Support Vector Machines: Slide 2

Supervised Learning

• Want to figure out the parameter of ℎ𝜃 such that ℎ𝜃 𝑥 = 𝑦 for

unseen data (x, y)

• Overfitting: finding a 𝜃 that corresponds to the peculiarities of the

training set rather than to genuine patterns in the data

• Definition: there exists a 𝜃′ such that
𝑇𝑟𝑎𝑖𝑛𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝜃′ < 𝑇𝑟𝑎𝑖𝑛𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝜃
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝜃′ > 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝜃

• 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝜃′ is the performance of ℎ𝜃 on all possible data (of

which the training set is just a small subset)

• Can’t overfit on a training set that contains all the possible data!

Support Vector Machines: Slide 3

Strategy so far to avoid overfitting

• Constrain the 𝜃

• Regularization, early stopping

• Constrain the ℎ𝜃

• Make the neural network small

• Don’t compute too many features of the input 𝑥

Support Vector Machines: Slide 4

Support Vector Machines (SVMs)

• Idea: select an ℎ𝜃 that separates the data with the largest margin

• Hope: this will make ℎ𝜃 more generalizable

• Idea: apply the kernel trick to be able to compute lots of features of
the data, and apply SVMs to avoid overfitting

• History

• SVMs: Vladimir Vapnik and Alexey Chervoninkis in 1963

• Kernels and SVMs: Bernhard Boser, Isabelle Guyon, and Vladimir
Vapnik in 1992

• Soft margins: Corinna Cortes and Vladimir Vapnik, 1993

• Applied in practice to classify text, images, etc.

Support Vector Machines: Slide 5

Vladimir Vapnik and his theoretical upper
bound on the test error (not covered)

Support Vector Machines: Slide 6

Linear Classifiers

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

How would you
classify this data?

Support Vector Machines: Slide 7

Linear Classifiers

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

How would you
classify this data?

Support Vector Machines: Slide 8

Linear Classifiers

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

How would you
classify this data?

Support Vector Machines: Slide 9

Linear Classifiers

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

How would you
classify this data?

Support Vector Machines: Slide 10

Linear Classifiers

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

Any of these
would be fine..

..but which is
best?

Support Vector Machines: Slide 11

Classifier Margin

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙 + 𝒃)

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

Support Vector Machines: Slide 12

Maximum Margin

f x

a

yest

denotes +1

denotes -1

𝒇 𝒙,𝒘, 𝒃 = 𝒔𝒊𝒈𝒏(𝒙𝑻𝒙 + 𝒃)

The maximum
margin linear
classifier is the
linear classifier
with the maximum
margin.

Linear SVMs
(LSVMs) find the
decision boundary
with the largest
margin

Support Vectors
are those
datapoints that
the margin
pushes up
against

Support Vector Machines: Slide 13

Why Maximum Margin?

• Intuitively this feels safest.

• If we’ve made a small error in the location of the
boundary (it’s been jolted in its perpendicular
direction) this gives us least chance of causing a
misclassification.

• Empirically it works very very well.

• It can be mathematically shown that in some
settings this will have the best validation error

Support Vector Machines: Slide 14

Specifying a line and margin

• How do we represent this mathematically?

• …in m input dimensions?

Plus-Plane

Minus-Plane

Classifier Boundary

Support Vector Machines: Slide 15

Specifying a line and margin

• Plus-plane = { 𝑥:𝑤𝑇𝑥 + 𝑏 = +1}

• Minus-plane = {𝑥:𝑤𝑇𝑥 + 𝑏 = −1}

Plus-Plane

Minus-Plane

Classifier Boundary

Classify as.. +1 if 𝑤𝑇𝑥 + 𝑏 ≥ 1

-1 if 𝑤𝑇𝑥 + 𝑏 ≤ −1

Universe
explodes

if -1 < 𝑤𝑇𝑥 + 𝑏< 1

Support Vector Machines: Slide 16

Computing the margin width

• Plus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = 1}

• Minus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = −1}

The vector w is perpendicular to the Plus-plane

• The vector 𝑤 is in general perpendicular to the plane 𝑤𝑇𝑥 = 0

• {𝑥: 𝑤𝑇𝑥 = 0} is the set of vectors such that are perpendicular to 𝑤.

• 𝑤𝑇𝑥 = 𝑐 is just 𝑤𝑇𝑥 = 0, shifted

M = Margin Width

How do we compute
M in terms of w
and b?

Support Vector Machines: Slide 17

Computing the margin width

• Plus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = 1}

• Minus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = −1}

• The vector w is perpendicular to the Plus Plane

• Let x- be any point on the minus plane

• Let x+ be the closest plus-plane-point to x-.

• Claim: x+ = x- + lw for some value of l. Why?

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+

Support Vector Machines: Slide 18

Computing the margin width

• Plus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = 1}

• Minus-plane = {𝑥: 𝑤𝑇𝑥 + 𝑏 = −1}

• The vector w is perpendicular to the Plus Plane

• Let x- be any point on the minus plane

• Let x+ be the closest plus-plane-point to x-.

• Claim: x+ = x- + lw for some value of l. Why?

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+

The line from x- to x+ is
perpendicular to the
planes.

So to get from x- to x+

travel some distance in
direction w.

Support Vector Machines: Slide 19

Computing the margin width

What we know:

• 𝒘𝑻𝒙+ + 𝒃 = 𝟏

• 𝒘𝑻𝒙− + 𝒃 = −𝟏

• 𝒙+ = 𝒙− + 𝝀𝒘

• 𝑥+ − 𝑥− = 𝑀

It’s now easy to get M in
terms of w and b

M = Margin Width

𝒘𝑻 𝒙− + 𝝀𝒘 + 𝒃 = 𝟏 ⇒
𝒘𝑻𝒙− + 𝒃 + 𝝀𝒘𝑻𝒘 = 𝟏 ⇒

−1 + 𝜆𝑤𝑇𝑤 = 1

So

𝜆 =
2

𝑤𝑇𝑤

x-

x+

Support Vector Machines: Slide 20

Computing the margin width

What we know:

• 𝒘𝑻𝒙+ + 𝒃 = 𝟏

• 𝒘𝑻𝒙− + 𝒃 = −𝟏

• 𝒙+ = 𝒙− + 𝝀𝒘

• 𝑥+ − 𝑥− = 𝑀

• 𝜆 =
2

𝑤𝑇𝑤

M = Margin Width =

x-

x+
2

𝑤𝑇𝑤

𝑀 = 𝑥+ − 𝑥− = 𝜆𝑤 =

𝜆 𝑤 = 𝜆 𝑤𝑇𝑤 =

2 𝑤𝑇𝑤

𝑤𝑇𝑤
=

2

𝑤𝑇𝑤

Support Vector Machines: Slide 21

Learning the Maximum Margin Classifier

Given a guess of w and b we can

• Compute whether all data points are in the correct half-planes

• Compute 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

• Compute the width of the margin

• We now want to find the 𝑤 and 𝑏 that produce the maximum
margin

M = Margin Width =

x-

x+
2

𝑤𝑇𝑤

Support Vector Machines: Slide 22

Learning via Quadratic Programming

• QP is a well-studied class of optimization
algorithms to maximize a quadratic function of
some real-valued variables subject to linear
constraints.

Support Vector Machines: Slide 23

Quadratic Programming

2
maxarg

uu
ud

u

R
c

T
T Find

nmnmnn

mm

mm

buauaua

buauaua

buauaua

...

:

...

...

2211

22222121

11212111

)()(22)(11)(

)2()2(22)2(11)2(

)1()1(22)1(11)1(

...

:

...

...

enmmenenen

nmmnnn

nmmnnn

buauaua

buauaua

buauaua

And subject to

n additional linear
inequality
constraints

e
a
d
d
itio

n
a
l lin

e
a
r

e
q
u
a
lity

co

n
stra

in
ts

Quadratic criterion

Subject to

Support Vector Machines: Slide 24

Quadratic Programming

2
maxarg

uu
ud

u

R
c

T
T Find

Subject to

nmnmnn

mm

mm

buauaua

buauaua

buauaua

...

:

...

...

2211

22222121

11212111

)()(22)(11)(

)2()2(22)2(11)2(

)1()1(22)1(11)1(

...

:

...

...

enmmenenen

nmmnnn

nmmnnn

buauaua

buauaua

buauaua

And subject to

n additional linear
inequality
constraints

e
a
d
d
itio

n
a
l lin

e
a
r

e
q
u
a
lity

co

n
stra

in
ts

Quadratic criterion

Support Vector Machines: Slide 25

Learning the Maximum Margin Classifier

Given a guess of w , b we can

• Compute whether all data points
are in the correct half-planes

• Compute the margin width

Assume R datapoints, each 𝑥 𝑘 , 𝑦 𝑘

where 𝑦(𝑘)= +/- 1

What should our quadratic
optimization criterion be?

Minimize 𝑤𝑇𝑤

How many constraints will we
have?

What should they be?

𝑀 =
2

𝑤𝑇𝑤

Support Vector Machines: Slide 26

Learning the Maximum Margin Classifier

Given guess of w , b we can

• Compute whether all data points
are in the correct half-planes

• Compute the margin width

Assume R datapoints, each 𝑥 𝑘 , 𝑦 𝑘

where 𝑦(𝑘)= +/- 1

What should our quadratic
optimization criterion be?

Minimize 𝑤𝑇𝑤

How many constraints will we
have? R

What should they be?

𝑤𝑇𝑥(𝑘) + 𝑏 ≥ 1 if 𝑦(𝑘) = 1

𝑤𝑇𝑥(𝑘) + 𝑏 ≤ −1 if 𝑦(𝑘) = −1

𝑀 =
2

𝑤𝑇𝑤

Support Vector Machines: Slide 27

Support Vectors

• 𝑥’s s.t. 𝑤𝑇𝑥(𝑘) + 𝑏 = 1 lie on the
line 𝑤𝑥 + 𝑏 = 1

• 𝑥’s s.t. 𝑤𝑇𝑥(𝑘) + 𝑏 = −1 lie on the
line 𝑤𝑥 + 𝑏 = −1

• Those x’s define the 𝑤

• Can ignore all other data, and
the maximum-margin classifier
will be the same

What should our quadratic
optimization criterion be?

Minimize 𝑤𝑇𝑤

How many constraints will we
have? R

What should they be?

𝑤𝑇𝑥(𝑘) + 𝑏 ≥ 1 if 𝑦(𝑘) = 1

𝑤𝑇𝑥(𝑘) + 𝑏 ≤ −1 if 𝑦(𝑘) = −1

𝑀 =
2

𝑤𝑇𝑤

Support Vector Machines: Slide 28

Support Vectors

• Support vectors are the vectors that determine
the separating hyperplane

• They lie on 𝑤𝑇𝑥 + 𝑏 = 1 and 𝑤𝑇𝑥 + 𝑏 = −1

• Other vectors in the training set don’t matter for
the decision boundary

Support Vector Machines: Slide 29

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Support Vector Machines: Slide 30

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1:

Find minimum 𝑤𝑇𝑤, while
minimizing number of
training set errors.

Problemette: Two things
to minimize makes for
an ill-defined
optimization

Support Vector Machines: Slide 31

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

𝑤𝑇𝑤 + C (#train errors)

There’s a serious practical
problem that’s about to make
us reject this approach. What
is it?

Tradeoff parameter

Support Vector Machines: Slide 32

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

𝑤𝑇𝑤 + C (#train errors)

There’s a serious practical
problem that’s about to make
us reject this approach. Can
you guess what it is?

Tradeoff parameter
Can’t be expressed as a Quadratic

Programming problem.

Solving it may be too slow.

(Also, doesn’t distinguish between
disastrous errors and near misses)

Support Vector Machines: Slide 33

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 2.0:

Minimize
𝑤𝑇𝑤 + C (distance of error

points to their
correct place)

Support Vector Machines: Slide 34

Learning the Maximum Margin with Noise
Given guess of w , b we can

• Compute whether all data points
are in the correct half-planes

• Compute the margin width

Assume R datapoints, each 𝑥 𝑘 , 𝑦 𝑘

where 𝑦(𝑘)= +/- 1

What should our quadratic
optimization criterion be?

How many constraints will we
have?

What should they be?

𝑀 =
2

𝑤𝑇𝑤

Support Vector Machines: Slide 35

Learning the Maximum Margin with Noise
Given guess of w , b we can

• Compute whether all data points
are in the correct half-planes

• Compute the margin width

Assume R datapoints, each 𝑥 𝑘 , 𝑦 𝑘

where 𝑦(𝑘)= +/- 1

What should our quadratic
optimization criterion be?

Minimize
1

2
𝑤𝑇𝑤 + 𝐶 σ𝑘=1

𝑅 𝜖(𝑘)

How many constraints will we
have? R

What should they be?

e7

e11

e2

𝑀 =
2

𝑤𝑇𝑤

𝒘𝑻𝒙(𝒌) + 𝒃 ≥ 𝟏 − 𝝐(𝒌) if 𝒚(𝒌) = 𝟏

𝒘𝑻𝒙(𝒌) + 𝒃 ≤ −𝟏 + 𝝐(𝒌) if 𝒚(𝒌) = −𝟏

𝝐(𝒌) ≥ 𝟎, for all 𝒌

The 𝜖(𝑘)’s are called “slack variables”

The technique is called “soft margin”

Support Vector Machines: Slide 36

Learning the Maximum Margin with Noise
Given guess of w , b we can

• Compute whether all data points
are in the correct half-planes

• Compute the margin width

Assume R datapoints, each 𝑥 𝑘 , 𝑦 𝑘

where 𝑦(𝑘)= +/- 1

What should our quadratic
optimization criterion be?

Minimize
1

2
𝑤𝑇𝑤 + 𝐶 σ𝑘=1

𝑅 𝜖(𝑘)

How many constraints will we
have? R

What should they be?

e7

e11

e2

𝑀 =
2

𝑤𝑇𝑤

𝒘𝑻𝒙(𝒌) + 𝒃 ≥ 𝟏 − 𝝐(𝒌) if 𝒚(𝒌) = 𝟏

𝒘𝑻𝒙(𝒌) + 𝒃 ≤ −𝟏 + 𝝐(𝒌) if 𝒚(𝒌) = −𝟏

𝝐(𝒌) ≥ 𝟎, for all 𝒌

Our original (noiseless data) QP had m+1
variables: w1, w2, … wm, and b.

Our new (noisy data) QP has m+1+R
variables: w1, w2, … wm, b, , 𝜖(1), , … 𝜖(𝑅)

m = # input
dimensions

R= # records

Support Vector Machines: Slide 37

Primal Formulation for SVM with slack variables

m𝐢𝐧𝒘,𝒃
𝟏

𝟐
𝒘

𝟐
+ 𝑪σ𝒌 𝝐

(𝒌)

s.t.:

𝒘𝑻𝒙(𝒌) + 𝒃 ≥ 𝟏 − 𝝐(𝒌) if 𝒚(𝒌) = 𝟏

𝒘𝑻𝒙(𝒌) + 𝒃 ≤ −𝟏 + 𝝐(𝒌) if 𝒚(𝒌) = −𝟏

𝝐(𝒌) ≥ 𝟎, for all 𝒌

• Can solve using Quadratic Programming algorithms

• Know as the “primal formulation”

Equivalently:
𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘) + 𝜖(𝑘) ≥ 1

Support Vector Machines: Slide 38

Solving the Primal Formulation with Gradient Descent

m𝐢𝐧𝒘,𝒃
𝟏

𝟐
𝒘

𝟐
+ 𝑪σ𝒌 𝝐

(𝒌)

s.t.:

𝒘𝑻𝒙(𝒌) + 𝒃 ≥ 𝟏 − 𝝐(𝒌) if 𝒚(𝒌) = 𝟏

𝒘𝑻𝒙(𝒌) + 𝒃 ≤ −𝟏 + 𝝐(𝒌) if 𝒚(𝒌) = −𝟏

𝝐(𝒌) ≥ 𝟎, for all 𝒌

• Convert this to

min
𝑤,𝑏

𝐶

𝑘

max(0, 1 − 𝑦 𝑘 𝑤𝑇𝑥 𝑘 + 𝑏) +
1

2
𝑤

2

Equivalently:
𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘) + 𝜖(𝑘) ≥ 1

0 if 𝑤𝑇𝑥 𝑘 + 𝑏 > 1 𝑜𝑟 < −1 with the right 𝑦(𝑘)

𝜖(𝑘) otherwise

Support Vector Machines: Slide 39

Solving the Primal Formulation with Gradient Descent

• Solve with gradient descent:

min
𝑤,𝑏

𝐶

𝑘

max(0, 1 − 𝑦 𝑘 𝑤𝑇𝑥 𝑘 + 𝑏) +
1

2
𝑤

2

• max(0, t) is not differentiable at 0, but there are ways to deal
with this

• Compare to regularized logistic regression:

min
𝑤,𝑏

𝐶

𝑘

(𝑦(𝑘)log 𝜎(𝑤𝑇𝑥 𝑘 + 𝑏) + (1 − 𝑦 𝑘)(log(1 − 𝜎 𝑤𝑇𝑥 𝑘 + 𝑏) + 𝜆 𝑤
2

↔

min
𝑤,𝑏

𝐶

𝑘

log(1 + exp − 𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘)) + 𝜆 𝑤
2

𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘)

• Hinge loss doesn’t reward
outputting more than 1

• Log loss rewards outputting more
than 1 a little

• All the training examples matter
for logistic regression, but not for
linear SVM

Support Vector Machines: Slide 40

Primal Formulation for SVM with slack variables (again)

m𝐢𝐧𝒘,𝒃
𝟏

𝟐
𝒘

𝟐
+ 𝑪σ𝒌 𝝐

(𝒌)

s.t.:

𝒘𝑻𝒙(𝒌) + 𝒃 ≥ 𝟏 − 𝝐(𝒌) if 𝒚(𝒌) = 𝟏

𝒘𝑻𝒙(𝒌) + 𝒃 ≤ −𝟏 + 𝝐(𝒌) if 𝒚(𝒌) = −𝟏

𝝐(𝒌) ≥ 𝟎, for all 𝒌

• Can solve using Quadratic Programming algorithms

• Can solve with flavours of gradient descent

• Both would be slow for high dimensional x’s

Equivalently:
𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘) + 𝜖(𝑘) ≥ 1

Support Vector Machines: Slide 41

Lagrange Multipliers

• Want to maximize 𝑓(𝑥) subject to 𝑔1 𝑥 = 0, 𝑔2 𝑥 = 0,…

• E.g.: 𝑓 𝑥 = 𝑥1𝑥2𝑥3, 𝑔1 𝑥 = 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 − 64 𝑔2 𝑥 = 𝑥 + 𝑦 − 5

• 𝐿 𝑥, 𝛼 = 𝑓 𝑥 − 𝛼1𝑔1 𝑥 − 𝛼2𝑔2 𝑥 −⋯

• The constrained minimum of 𝑓(𝑥) will be a local optimum of 𝐿 𝑥, 𝛼

Support Vector Machines: Slide 42

Dual Formulation for SVM (no slack variables)

• Want to minimize
1

2
𝑤

2
subject to 𝑤𝑇𝑥 𝑘 + 𝑏 𝑦(𝑘) ≥ 1

• Use Lagrange multipliers to convert this to

• 𝐿𝑝 =
1

2
𝑤

2
− σ𝑘=1

𝑛 𝛼𝑘(𝑦
𝑘 𝑤𝑇𝑥 𝑘 + 𝑏 − 1)

min
𝑤,𝑏

𝐿𝑝 subject to 𝛼𝑘 ≥ 0,
𝜕𝐿𝑝

𝜕𝛼𝑘
= 0 for all k

• We can show with calculus (but won’t) that

𝜕𝐿𝑝

𝜕𝑤𝑚
= 0,

𝜕𝐿𝑝

𝜕𝑏𝑛
= 0 for all m, 𝑛 means 𝑤 = σ𝑘 𝛼𝑘𝑦

(𝑘)𝑥(𝑘) , σ𝑘 𝛼𝑘𝑦
(𝑖) = 0

• Substitute this in to get 𝑤
2
= σ𝑖 𝛼𝑖𝑦

𝑖 𝑥 𝑖 𝑇
σ𝑗 𝛼𝑗𝑦

𝑗 𝑥 𝑗 =

σ𝑖,𝑗 𝛼𝑖𝛼𝑗𝑦
(𝑖)𝑦(𝑗) (𝑥 𝑖 ⋅ 𝑥(𝑗))

Support Vector Machines: Slide 43

Dual Formulation for SVM

• Can show (but won’t) that we can solve the dual formulation instead
of the primal formulation:

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝑥 𝑗 ⋅ 𝑥 𝑘)

subject to 𝛼𝑘 ≥ 0 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

• Representer theorem (from last slide): 𝑤∗ = σ𝑘 𝛼𝑘𝑦
(𝑘)𝑥(𝑘)

• The optimal 𝑤 is a linear combination of the 𝑥’s!

• We only need to compute 𝑥 𝑗 ⋅ 𝑥 𝑘 when optimizing and testing

• Compute ℎ 𝑥 = σ𝑘 𝛼𝑘𝑦
𝑘 𝑥 𝑘 ⋅ 𝑥 + 𝑏

• Will see why this is important soon

• When the 𝑤 and 𝑥 are high-dimensional, but there are few examples,
it is more efficient to optimize with respect to the 𝛼s

Support Vector Machines: Slide 44

Dual Formulation for SVM

• ℎ 𝑥 = σ𝑘 𝛼𝑘𝑦
𝑘 𝑥 𝑘 ⋅ 𝑥 + 𝑏

• If ℎ 𝑥 ≥ 0, predict 𝑦 = 1

• Most 𝑥 𝑘 ′
𝑠 don’t influence the 𝑤 so most 𝛼𝑘

′ 𝑠 will be zero when we

solve the optimization problem

• 𝑥(𝑘) s.t. 𝛼𝑘 ≠ 0 are the support vectors

Support Vector Machines: Slide 45

Dual Formulation for SVM

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝑥 𝑗 ⋅ 𝑥 𝑘)

subject to 0 ≤ 𝛼𝑘 ≤ 𝑪 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

• We are constraining 𝛼𝑘 to be smaller than 𝐶

• Large C means a more complex model (and smaller training error)

Support Vector Machines: Slide 46

Lifting x to higher dimensions

• We saw before that a lot of the time, data that is not linearly
separable can be made separable if we compute nonlinear features of
the data

• Example: the activations of AlexNet

• Example: compute the distance from 𝑥 to every one of n

examples to simulate 1-Nearest Neighbours

• Compute the features using 𝜙(𝑥)

• 𝑥 is low-dimensional, 𝜙(𝑥) is high-dimensional

Support Vector Machines: Slide 47

The Dual Formulation and the Kernel Trick

• We can sometimes get away with not having to compute 𝜙 by using a
kernel function 𝐾

• 𝐾 𝑥 𝑖 , 𝑥 𝑗 = 𝜙 𝑥 𝑖 ⋅ 𝜙 𝑥 𝑗

• The 𝐾 and 𝜙 have to correspond to each other

• Note that here, 𝜙 𝑥 𝑖 is a vector.

• The ⋅ in 𝜙 𝑥 𝑖 ⋅ 𝜙 𝑥 𝑗 represents the dot product

Support Vector Machines: Slide 48

The Dual Formulation and the Kernel Trick

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝑥 𝑗 ⋅ 𝑥 𝑘)

subject to 0 ≤ 𝛼𝑘 ≤ 𝑪 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

Now, let’s solve the problem when x is mapped to 𝜙(𝑥)

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝜙(𝑥 𝑗) ⋅ 𝜙(𝑥 𝑘))

subject to 0 ≤ 𝛼𝑘 ≤ 𝑪 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

Equivalently,

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝐾(𝑥 𝑗 , 𝑥 𝑘))

subject to 0 ≤ 𝛼𝑘 ≤ 𝑪 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

𝐾 𝑥 𝑖 , 𝑥 𝑗 = 𝜙 𝑥 𝑖 ⋅ 𝜙 𝑥 𝑗

Support Vector Machines: Slide 49

The Dual Formulation and the Kernel Trick

max
𝛼𝑘≥0

σ𝑘 𝛼𝑘 −
1

2
σ𝑗𝑘 𝛼𝑗𝛼𝑘𝑦

𝑗 𝑦 𝑘 (𝐾(𝑥 𝑗 , 𝑥 𝑘))

subject to 0 ≤ 𝛼𝑘 ≤ 𝑪 for all 𝑘, σ𝑘 𝛼𝑘𝑦
(𝑘) = 0

• We map 𝑥 to a high-dimensional feature space, but only ever have to
compute the kernel

• Solves a computational problem

• 𝜙(𝑥) could be infinite-dimensional

Support Vector Machines: Slide 50

The Kernel Trick: example

• 𝐾 𝑎, 𝑏 = 𝑎𝑇𝑏 3

= 𝑎1, 𝑎2
𝑇 𝑏1, 𝑏2

3

= 𝑎1𝑏1 + 𝑎2𝑏2
3

= 𝑎1
3𝑏1

3 + 3𝑎1
2𝑏1

2𝑎2𝑏2 + 3𝑎1𝑏1𝑎2
2𝑏2

2 + 𝑎2
3𝑏2

3

= 𝑎1
3, 3𝑎1

2𝑎2, 3𝑎1𝑎2
2, 𝑎2

3 ⋅ 𝑏1
3, 3𝑏1

2𝑏, 3𝑏1𝑏2
2, 𝑏2

3

= 𝜙 𝑎 ⋅ 𝜙(𝑏)

• Can specify 𝐾 without explicitly writing down the 𝜙!

• Reminder: ℎ 𝑥 = σ𝑘 𝛼𝑘𝑦
𝑘 𝑥 𝑘 ⋅ 𝑥 + 𝑏

• So: ℎ𝐾 𝑥 = σ𝑘 𝛼𝑘𝑦
𝑘 𝜙(𝑥 𝑘) ⋅ 𝜙(𝑥) + 𝑏 = σ𝑘 𝛼𝑘𝑦

𝑘 𝐾(𝑥 𝑘 , 𝑥) + 𝑏

𝜙(𝑏)

Support Vector Machines: Slide 51

Kernels

• To predict: compute σ𝑘 𝛼𝑘𝑦
𝑘 𝐾(𝑥 𝑘 , 𝑥) + 𝑏

• Make sense to weight the 𝛼𝑘𝑦
(𝑘) more if 𝑥(𝑘) and 𝑥 are similar

• Polynomial kernel:

𝐾 𝑥 𝑖 , 𝑥 𝑗 = 𝑥 𝑖 ⋅ 𝑥 𝑗 + 1
𝑑
, 𝑑 ≥ 1

• Gaussian kernel

𝐾 𝑥 𝑖 , 𝑥 𝑗 = exp −
𝑥 𝑖 − 𝑥 𝑗

2

2𝜎2

• Sigmoid kernel

𝐾 𝑥 𝑖 , 𝑥 𝑗 = tanh 𝛽 𝑥 𝑖 𝑇
𝑥 𝑗 + 𝑎

Support Vector Machines: Slide 52

Kernels

• Mercer’s Theorem: any “reasonable” kernel corresponds to some 𝜙

• Polynomial kernels 𝑥 𝑖 ⋅ 𝑥 𝑗 + 1
𝑑

correspond to features spaces of

size exponential in 𝑑

• The Gaussian kernel corresponds to a 𝜙 that maps 𝑥 to an infinite-

dimensional space

Support Vector Machines: Slide 53

SVMs: Summary

• Find the maximum-margin linear classifier

• Possibly map the inputs to a high-dimensional space first

• Maximum-margin classifiers try to avoid overfitting

• Can efficiently map to very high-dimensional spaces

• The maximum-margin classifier is defined by the support vectors

• Support vectors are points in the training set

• Classify using

σ𝑘 𝛼𝑘𝑦
𝑘 𝐾(𝑥, 𝑥 𝑘) + 𝑏 ≥ 0

• Can ignore non-support vectors

• When using soft margin, select 𝐶
using cross-validation

• Select kernel by thinking about
the data, or by cross-validation

• What makes two x’s “close”?

Support Vector Machines: Slide 54

SVMs: Summary

• Kernels allow for very flexible hypotheses

• But must choose kernel parameters

• Exact optimization methods available

• Batch algorithm – the entire training set needs to be in memory
when learning

• Work well in practice

• Several good implementations available

Support Vector Machines: Slide 55

What you need to know

• Maximum margin

• The primal formulation for SVMs

• Hinge loss vs. log-loss (Soft-margin SVMs vs. Logistic Regression)

• Getting from the Representer Theorem (slide 40) to prediction of
new outputs in an SVM is we know the solution to the dual problem

• The kernel trick

• Why kernels that compute similarity make sense

• The intuition behind the prediction of new outputs

• SVMs work well in practice

• Don’t need to know:

• Anything involving Lagrange multipliers

• Getting from the primal formulation to the dual formulation,
even to the extent that we did that in class

• How to solve QP problems

