
Introduction to Convolutional Networks

CSC411: Machine Learning and Data Mining, Winter 2017

Michael Guerzhoy

Slides from Geoffrey Hinton, Alyosha Efros,
Andrej Karpathy

1



Computing Features

• Idea: each neuron on the 
higher layer is detecting the 
same feature, but in different 
locations on the lower layer
• Detecting=the output is high if 

the feature is present

• It’s the same feature because 
the weights are the same

• Note: each neuron is only 
connected with non-zero 
weights to a small area in the 
input

The red connections all 
have the same weight.

2



Feature Detection

• The weights of each unit in the upper layer can be represented as a 2D 
array

• To compute the input to each neuron
in the upper layer, we are computing
the dot product between the 2D array
(called kernel) and the area of the 
lower layer to which the neuron
is connected (called the receptive 
field)

• The operation of computing the feature layer from the lower layer is 
called convolution (technically, “cross-correlation,” but the differences 
between convolution and cross-correlation is unimportant here.)

-101

-202

-101

3x3 weights array

for a 3x3 area in the

input

3



-101

-202

-101

Vertical Edge

(absolute value)

Convolution Example: Sobel Filter

*

4



Convolution Example: Sobel Filter

-1-2-1

000

121

Horizontal Edge

(absolute value)

*

5



Convolution Example: Blob Detection

*

6



7



8



9



10



11



12



13



14



15



16



17



Pooling Features (“subsampling”)

• The job of complex cells

• Max Pooling
• Is there a diagonal edge somewhere 

in an area of the image?
• Take the maximum over the 

responses to the feature detector in 
the area

• Average Pooling
• Is there a blobs pattern in an area of 

the image?
• Take the average over the responses 

to the feature detectors in the area

• Max Pooling generally works better

18



Max Pooling as Hierarchical Invariance

• At each level of the 
hierarchy, we use an “or” 
to get features that are 
invariant across a bigger 
range of transformations.

• (Average Pooling is a little 
bit like an “AND”)

or

or

or

19



Putting it All Together

• Different types of layers: convolution and subsampling. 
• Convolution layers compute features maps: the 

response to multiple feature detectors on a grid in the 
lower layer

• Subsampling layers pool the features from a lower layer 
into a smaller feature map 

20



Why Convolutional Nets

• It’s possible to compute the same outputs in a fully 
connected neural network, but
• The network is much harder to learn

• There is more danger of overfitting if we try it with a 
really big network
• A convolutional network has fewer parameters due to weight 

sharing*

• It makes sense to detect features and then combine 
them
• That’s what the brain seems to be doing

* Small fully connected networks can work very well, but are hard to train 21



Learning Convolutional Nets: Replicated Weights

• 𝑣 = 𝑔 𝑊𝑢1 +𝑊𝑢2

•
𝜕𝑣

𝜕𝑊
= 𝑢1 + 𝑢2 𝑔′ 𝑊𝑢1 +𝑊 𝑢2

= 𝑢1𝑔
′ 𝑊𝑢1 +𝑊𝑢2 + 𝑢2𝑔

′ 𝑊𝑢1 +𝑊𝑢2

• Note: if 𝑢1is positive but 𝑢2 is negative, W
will be “pulled” in different directions by
the two

𝑣

𝑢1 𝑢2

W 𝑤

22



Learning Convolutional Nets: Max Pooling

•
𝜕𝑣

𝜕𝑢𝑖
= ቊ

1, 𝑢𝑖 > 𝑢𝑗 , ∀𝑗 ≠ 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The u’s are real, so let’s not 
worry about them being 
equal

• The gradient only flows to the 
unit that’s responsible for the 
value of v
• Makes sense! The other ones 

aren’t likely detecting any 
patterns

𝑣 = max(𝑢1, 𝑢2)

𝑢1 𝑢2

23



LeNet: 

24



A Brute Force Approach

• Convolutional Networks architectures use 
knowledge about invariances to design the network 
architecture/weight constraints

• But it’s much simpler to incorporate knowledge of 
invariances by just creating extra training data:
• for each training image, produce new training data by 

applying all of the transformations we want to be 
insensitive to (Le Net can benefit from this too)

• Then train a large, dumb net on a fast computer.
• This works surprisingly well if the transformations are 

not too big

25


