Introduction to Convolutional Networks

C3: 1. maps 16@10x10
INPUT %2!oature maps S4: 1. maps 16@5x5

3232 S2:f. ma
6@14x1fs

I
| Full conAection l Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

ilic(ijes _f:(om Gterf)ffrey Hinton, Alyosha Efros, CSC411: Machine Learning and Data Mining, Winter 2017
ndrej Karpathy

Michael Gu?rzhoy

Computing Features

The red connections all

e |dea: each neuron on the have the same weight

higher layer is detecting the
same feature, but in different
locations on the lower layer
* Detecting=the output is high if
the feature is present
* |t's the same feature because
the weights are the same

* Note: each neuron is only
connected with non-zero
weights to a small area in the
input

Feature Detection

* The weights of each unit in the upper layer can be represented as a 2D
array

* To compute the input to each neuron
in the upper layer, we are computing 1101-1
the dot product between the 2D array
(called kernel) and the area of the

lower layer to which the neuron 210]-2
is connected (called the receptive 1 1ol
field) _

3x3 weights array
for a 3x3 area in the
input

* The operation of computing the feature layer from the lower layer is
called convolution (technically, “cross-correlation,” but the differences
between convolution and cross-correlation is unimportant here.)

Convolution Example: Sobel Filter

]

E 4

| %

I :

i 8

! § -2
-1

Vertical Edge
(absolute value)

Convolution Example: Sobel Filter

Horizontal Edge
(absolute value)5

Convolution Example: Blob Detection

003 2 2 2 3 0 0)
0 2 3 5 5 5 3 2 0
3 3 5 3 0 3 5 3 3
2 53 -12 -23 -12 3 5 2
2 5 0 —-23 -40 -23 0 5 2
2 53 -12 -23 -12 3 5 2
3 3 5 3 0 3 5 3 3
0 2 3 5 5 5 3 2 0
0 0 3 2 2 2 3 0 0

-

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Output size:
(N - F) / stride + 1

eg.N=7F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/)2+1=3
stride 3=>(7-3)/3+1=2.33:\

n practice: Common to zero pad the border

0|0

0

0

0

o | o | o | o | O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F)/ stride + 1

n practice: Common to zero pad the border

000|000

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

7x7 output!

iIn general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F =3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Pooling Features (“subsampling”)

The job of complex cells

* Max Pooling Single depth slice
e Isthere a diagonal edge somewhere x| | 111|214 | e
in an area of the image? MR | oistride2
 Take the maximum over the 32
responses to the feature detector in 112 S

the area

Average Pooling

* |s there a blobs pattern in an area of
the image?

* Take the average over the responses
to the feature detectors in the area

* Max Pooling generally works better

Max Pooling as Hierarchical Invariance

e At each level of the

hierarchy, we use an “or” .
to get features that are
invariant across a bigger
range of transformations. . O
* (Average Pooling is a little or
bit like an “AND”)
o\

Putting it All Together

Inpuc layer (31) 4 feature maps

. 1 (C1) 4 feature maps (52) 6 feature maps {C2) & feature maps

convolution layer I sub-sampling layer I convalution layer I sub-sampling layer l fully connecred MLF'l

* Different types of layers: convolution and subsampling.

* Convolution layers compute features maps: the
response to multiple feature detectors on a grid in the
lower layer

* Subsampling layers pool the features from a lower layer
into a smaller feature map

20

Why Convolutional Nets

* It’s possible to compute the same outputs in a fully
connected neural network, but
 The network is much harder to learn

* There is more danger of overfitting if we try it with a
really big network

* A convolutional network has fewer parameters due to weight
sharing*

* [t makes sense to detect features and then combine
them

* That’s what the brain seems to be doing

* Small fully connected networks can work very well, but are hard to train

Learning Convolutional Nets: Replicated Weights

cv=gWu; + Wu,)

0 /
a;, = (uy +uy)g Wuy + W u,)

—_ ulg’(Wul + WU,Z) + ng’(Wul + WUz)

* Note: if uqis positive but u, is negative, W
will be “pulled” in different directions by
the two

Learning Convolutional Nets: Max Pooling

ov 1,ul~ > uj,‘v’j * 1
0, otherwise

aui B

* The u’s are real, so let’s not
worry about them being
equal

* The gradient only flows to the
unit that’s responsible for the
value of v

* Makes sense! The other ones
aren’t likely detecting any
patterns

23

LeNet:

_ C3:f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

l | 7 Full cmrlecﬁon l Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

24

A Brute Force Approach

* Convolutional Networks architectures use
knowledge about invariances to design the network
architecture/weight constraints

e Butit’s much simpler to incorporate knowledge of
invariances by just creating extra training data:

 for each training image, produce new training data by
applying all of the transformations we want to be
insensitive to (Le Net can benefit from this too)

* Then train a large, dumb net on a fast computer.

* This works surprisingly well if the transformations are
not too big

