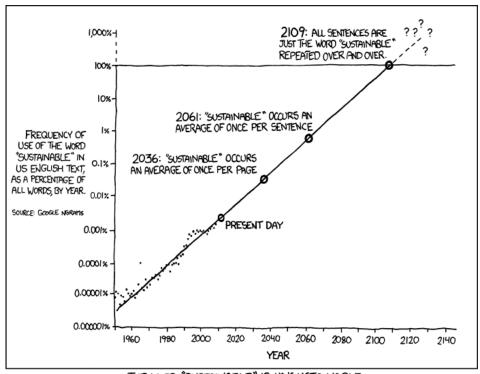
Linear Regression



THE WORD "SUSTAINABLE" IS UNSUSTAINABLE.

https://xkcd.com/1007/

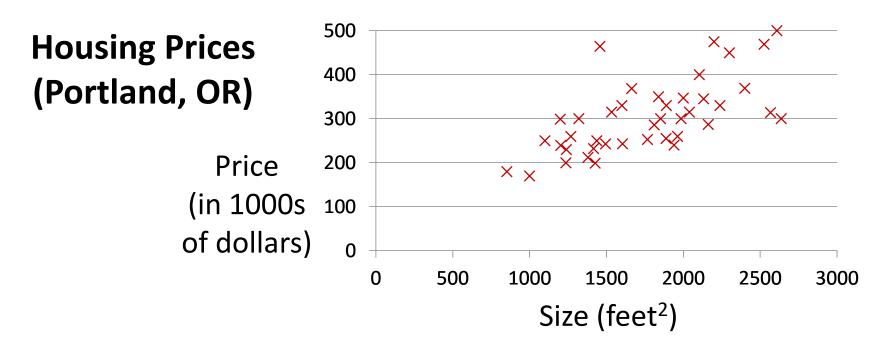
Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
	1534	315
	852	178
	•••	••••

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

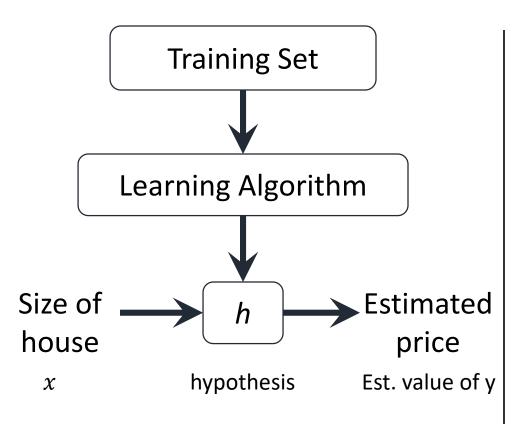


Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output



H maps x's to y's.

How do we represent *h* ?

- We represent hypotheses about the data using the parameters $\theta = (\theta_0, \theta_1)$
- If the data is correctly predicted according to hypothesis h_{θ} , then $y \approx h_{\theta}(x) = \theta_0 + \theta_1 x$
- The learning algorithm finds the best hypothesis h_{θ} for the training set
- We can then estimate the values of y for the test set using that h_{θ}
- If $h_{\theta}(x)$ is a linear function of a real number x, this procedure is called linear regression.

Trai	'n	inσ	Set
Ha		IIIS	

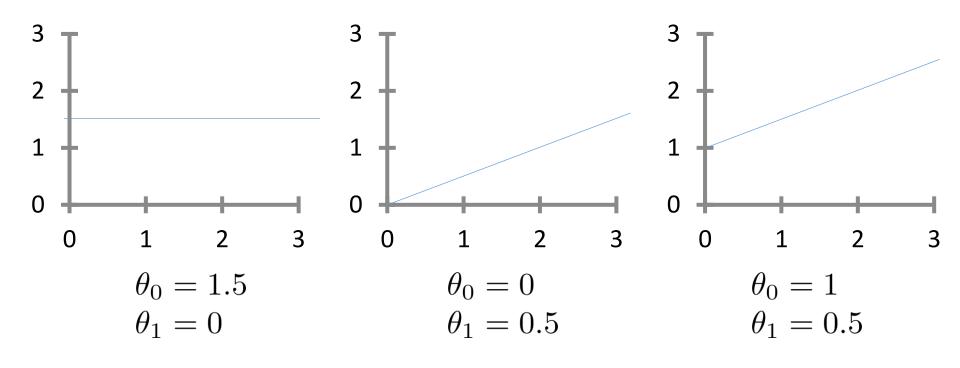
Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

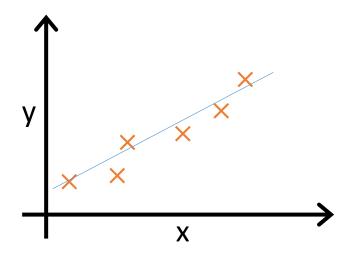
Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$





Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Quadratic cost function - on the board

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

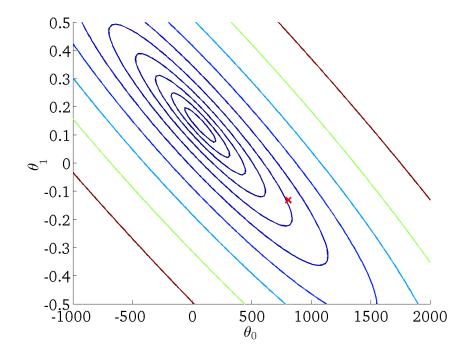
Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Cost Function Surface Plot



Contour Plots

- For a function F(x, y) of two variables, assigned different colours to different values of F
- Pick some values to plot
- The result will be contours curves in the graph along which the values of F(x, y) are constant



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
500 \\
400 \\
\hline
200 \\
100 \\
\hline
\end{array}$ Training data
Current hypothesis

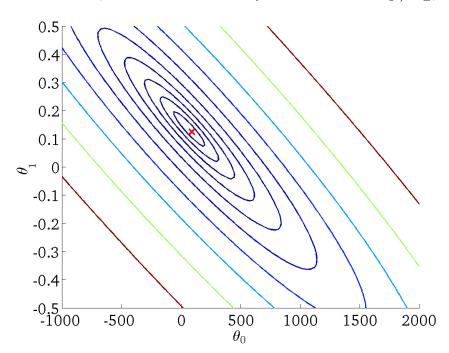
3000

Size (feet²)

4000

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



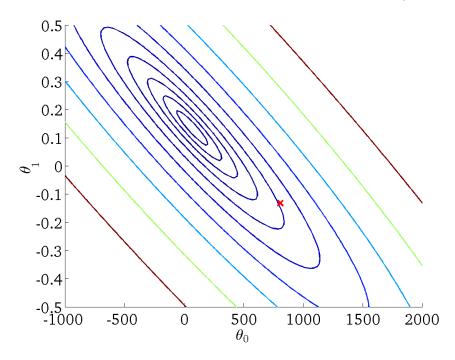
Cost Function Contour Plot

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)



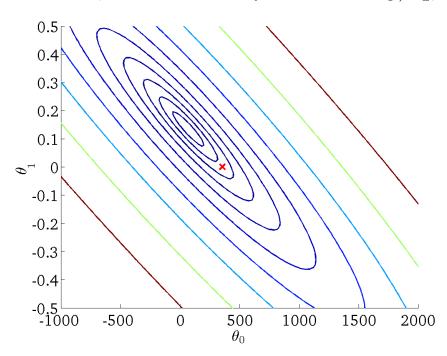
3000

Size (feet²)

4000

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

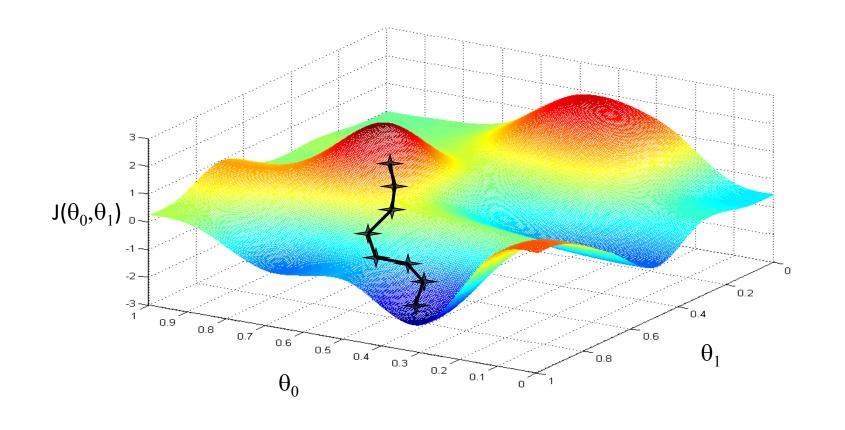


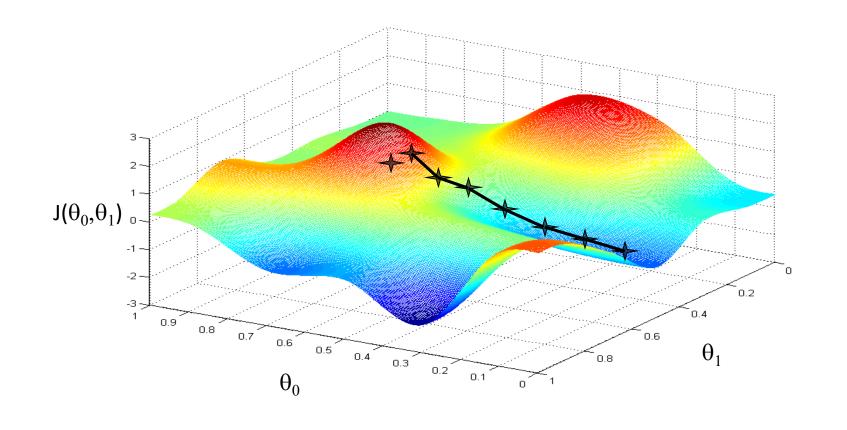
Have some function $J(heta_0, heta_1)$ Want $\min_{ heta_0, heta_1} J(heta_0, heta_1)$

Outline:

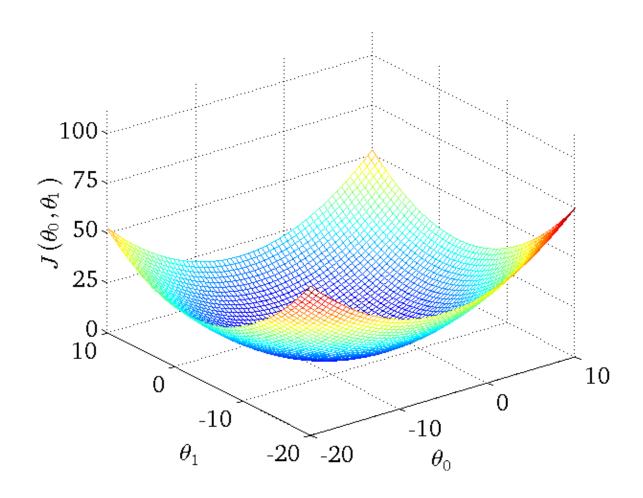
- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient Descent on the board





For Linear Regression, J is bowl-shaped ("convex")



Gradient Descent Example

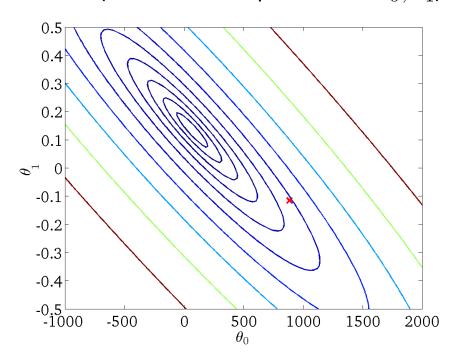
Size (feet²)

3000

4000

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
500 \\
400 \\
\hline
200 \\
\hline
100 \\
\hline
\end{array}$ Training data
Current hypothesis

3000

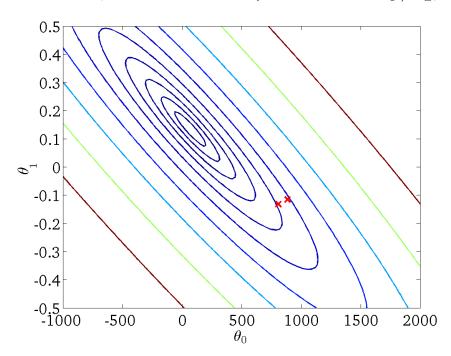
Size (feet²)

4000

0

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x)

Training data

3000

Size (feet²)

Current hypothesis

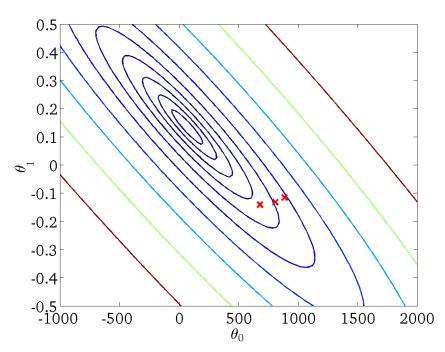
4000

100

0

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
500 \\
400 \\
\hline
200 \\
\hline
100 \\
\hline
\end{array}$ Training data

Current hypothesis

3000

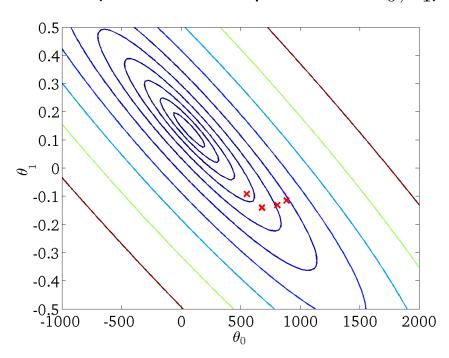
Size (feet²)

4000

0

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s)
000 \$ 300
000 \$ 500 500

Training data

3000

Size (feet²)

Current hypothesis

4000

200

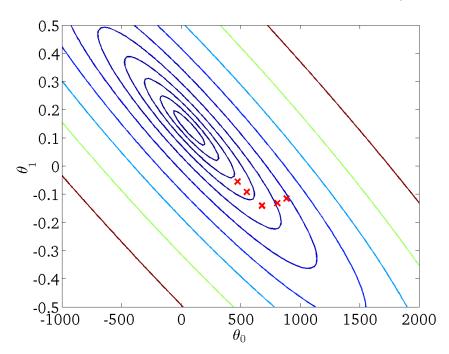
100

0

1000

2000

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c} 700 \\ 600 \\ \hline \\ 500 \\ \hline \\ 400 \\ \hline \\ 200 \\ \hline \\ 100 \\ \hline \\ \end{array}$

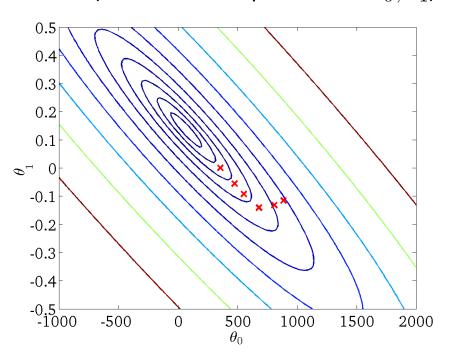
Size (feet²)

3000

4000

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c} 700 \\ 600 \\ \hline \\ 500 \\ \hline \\ 400 \\ \hline \\ 200 \\ \end{array}$

Training data

3000

Size (feet²)

Current hypothesis

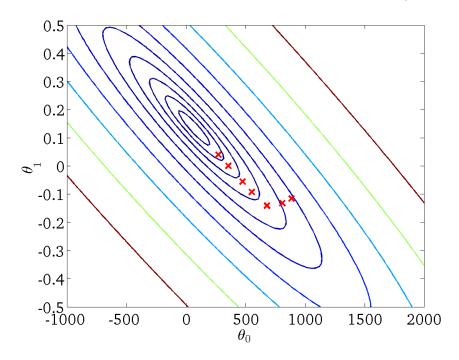
4000

100

0

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x)

700
600
500
400
200
Training data
Current hypothesis

3000

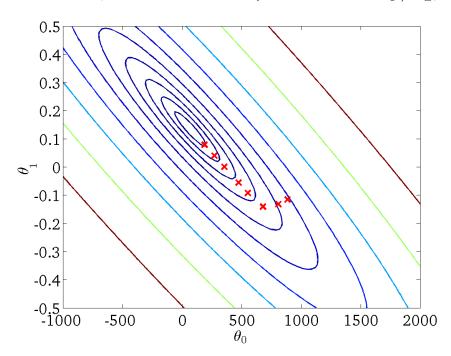
Size (feet²)

4000

0

1000

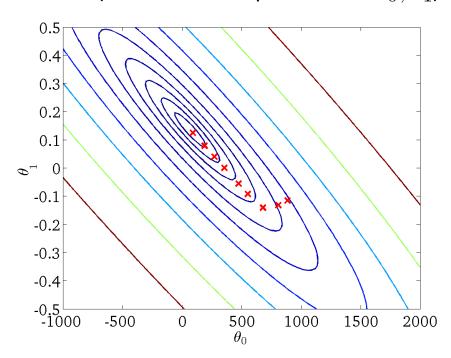
 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)



(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c} 700 \\ 600 \\ \hline \\ 500 \\ \hline \\ 400 \\ \hline \\ 200 \\ \hline \\ 100 \\ \hline \\ 1000 \\ \hline \end{array}$

Size (feet²)

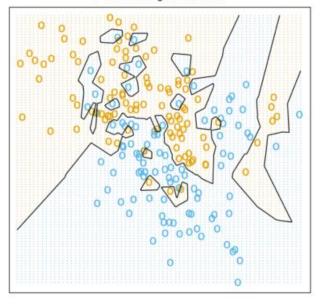
 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

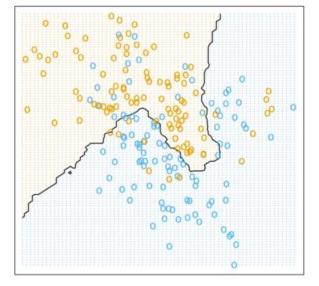


Linear Regression vs. k-Nearest Neighbours

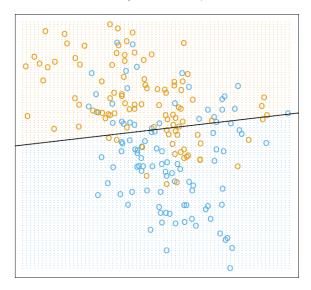
1-Nearest Neighbor Classifier

15-Nearest Neighbor Classifier





Linear Regression of 0/1 Response



Orange: y = 1

Blue: y = 0

Linear Regression vs. k-Nearest Neighbours

- Linear Regression: the boundary can only be linear
- Nearest Neighbours: the boundary can more complex
- Which is better?
 - Depends on what the actual boundary looks like
 - Depends on whether we have enough data to figure out the *correct* complex boundary