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The Task

•Given a set of labelled examples (the training set), 
determine/predict the labels of a set of unlabelled
examples (the test set)

•Training set: 
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•Test set: 
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Face Recognition Example

•Training set: photos of musicians with names 
(“labels”) 
•Test set: photos of musicians whose name we want 
to figure out

•Note: generally, we will know the labels for the test set, 
but we pretend we don’t. We can then predict the labels 
using our algorithm and compare the answers the 
algorithm gives to the correct answers to figure out the 
performance of our algorithm.

•An estimate for the performance of the algorithm 
on new data: the proportion of the examples in the 
test set that were correctly classified



Nearest Neighbour Classification

•Task: classify the test example
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)

•Idea: find the k nearest neighbours of x in the training set, and output the 
majority label
•The distance between 𝑥(1) and 𝑥(2) could be 

• 𝑥 1 − 𝑥 2 = σ𝑖 𝑥𝑖
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• Minus the cosine of the angle between the vectors 𝑥(1) and 𝑥(2)

•By default, we use the Euclidean distance



1-nearest neighbour
Task: classify the test set of “+”
The labels for the training set are GREEN and RED
The examples are 2-dimensional
Use L2/Euclidean distance



3-nearest neighbour



5-nearest neighbour



How do we determine K?

•Try different values, and see which works best on the test set?
•Could do that, but then we are selecting the best K for our 
particular test set. This means that the performance on our test 
set is now an overestimate of how well we’d do on new data

•Solution: set aside a validation set (which is separate from both 
the training and the test set), and select the K for the best 
performance on the validation set, but report the results on the test 
set

•Generally, the performance on the validation set will be better 
than on the test set
•What about the performance on the training set?



What does the best K say about 
the data?

Large k: relatively simple boundary, no small “islands” in the data. Small changes in 
x do no generally change the label
Small k: a complex boundary between the labels. Small changes in x often change 
the labels



Why not let K be very small?

•Great for the performance on the training set!
•Perfect performance guaranteed for k = 1

•If the test data does not look exactly like the training 
data, the performance on the test data will be worse 
for k that is too small

•The training data could be noisy (e.g., in the orange 
region, data points are sometimes blue with probability 
5%, randomly)
•This is an example of overfitting – building a classifier 
that works well on the training set, but does not 
generalize well to the test set



Why not let K be very large?


