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No Free Lunch Theorem

* (on the board)



Inductive bias

* The assumptions about the data that are built into a
machine learning algorithm

* Linear/logistic regression
* The output can be predicted as a linear function of the input

* k-NN with Euclidean distance
* Nearby points in Euclidean space have similar labels

* ConvNet layers
e Convolutions are useful for predicting the output

* The output can be predicted from functions that have local
support in the input

e L2 Regularization
* The output is approximately linear in the input



Few shot learning

* Learning with few input examples

* Few-shot learning: only a few examples are given per
class

* One-shot learning: only one example given per output
class

e (Zero-shot learning: classifying inputs without seeing
examples of the class, but seeing some kind of
description. E.g., finding zebras given the description
“striped horse”)

* Requires strong (and appropriate) inductive bias



Meta-learning

Follow the
gradient

Tuning the learning process by
learning multiple related tasks Gradient
. Descent
Many formulations
* Learning an optimizer
* Learning an RNN that ingests
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Why is meta-learning a good
idea?

* Deep learning works well, but requires large
datasets

* In many cases, we have little data available for a
specific task, but have more data for other, related
tasks



Meta-learning with supervised
learning

training data test set
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Supervised meta-learning with
RNNS

“Generic” learning: “Generic” meta-learning:
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Meta-learning methods

black-box meta-learning

Ytest
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some kind of network that can read in an
entire (few-shot) training set
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Santoro et al. Meta-Learning  Mishra et al. A Simple
with Memory-Augmented
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Neural Attentive Meta-

non-parametric meta-learning
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Vinyals et al. Matching Networks for
One Shot Learning. 2017.

Snell et al. Prototypical Networks
for Few-shot Learning. 2018.

gradient-based meta-learning
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Finn et al. Model-Agnostic Meta-Learning. 2018.



Basic idea: Nearest Neighbours

o -—--- why does this work?

that is, why does the nearest
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M atC h | n g n EtWO I”kS g(m};cra Dfr) bidirectional LSTM embedding

kyz_!:y;s

Prearest (T} |25°) o exp(g(zi, DI)* f (=¥, DiF))

different nets to embed z'* and %

both f and g conditioned on entire set D}

Vinyals et al. Matching networks for few-shot learning. 2016.
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Prototypical networks

Two simple ideas compared to matching networks:

1. Instead of “soft nearest neighbor,” construct prototype for each class
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2. Get rid of all the complex junk —bidirectionat-tSTHvi-embedding—
——attentionat-SHv-embedding—

Snell et al. Prototypical networks for few-shot learning. 2017.
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Representation

is pretraining a type of meta-learning?
better features = faster learning of new task!
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Meta-learning as an optimization

problem

f* = arg mgin Z J[:((D!* ‘D'.T'-b)

i=1
where ¢; = fo(D!")
what if fp(D}") is just a finetuning algorithm?
fo(Di") =0 — aVeL(0, D))

(could take a few gradient steps in general)

This can be trained the same way as any
other neural network, by implementing
gradient descent as a computation graph
and then running backpropagation through
gradient descent!

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.



MAML in pictures
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What did we just do?

supervised learning: f(x) — y
supervised meta-learning: f(D',z) — y

model-agnostic meta-learning: fyamw (DY, x) — y

Faianir, (D, ) = for(2) / Just another computation graph

0 =60—a Z VoL(fo(x),y)
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Why does it work?

b
black-based meta-learning MAML
Ytest «+—— test label O
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\ ] \ . (:IH » Y1 )
J test input
this implements the (11?21 ‘yz)
i H H »n
learned learning algorithm (.’1-'3, yg)
* Does it converge? * Does it converge?
* Kind of? * Yes (it’s gradient descent...)
* What does it converge to? * What does it converge to?
* Who knows... * Alocal optimum (it’s gradient descent...)
* What to do if it’s not good enough? * What to do if it’s not good enough?
* Nothing... * Keep taking gradient steps (it’s gradient descent...)
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black-box meta-learning

Ytest
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some kind of network that can read in an
entire (few-shot) training set

- minimal inductive bias (i.e.,
everything has to be meta-learned)

- hard to scale to “medium” shot (we
get long “sequences)

non-parametric meta-learning

Vinyals et al. Matching Networks for
One Shot Learning. 2017.

- restricted to classification, hard to
extend to other settings like
regression or reinforcement learning

- somewhat specialized architectures

gradient-based meta-learning
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Finn et al. Model-Agnostic Meta-Learning. 2018.

- meta-training optimization problem

is harder, requires more tuning
- requires second derivatives
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