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Key points

• The Wasserstein GAN training algorithm is similar 
to GAN, but it constrains the discriminator
• Making the discriminator more constrained helps the 

generator train

• To invent WGAN, Martin Arjovski reformulated the 
cost function of the GAN as minimizing the distance 
between the generator distribution and the data 
distribution
• He then used a different notion of distance to derive 

WGAN
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Pre-requisites

• Understand what “data distribution” and 
“generator distribution” are
• The probability distributions over the samples implied 

by the training data and the data generated by the 
generator

• Understand the Min-Max formulation of the GAN 
cost function

• Understand the operation of marginalizing
distributions

• Gradient descent + moment in neural networks
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Connections to what you have 
seen
• The KL divergence is very similar to the cross-

entropy cost function
• The cross-entropy cost function measures the difference 

between the target labels and the outputs of the
network
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Heavy math ahead, optional math 
in green
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The objective function of the 
original GAN
• For a fixed generator G, the optimal discriminator is

• Proof: we are maximizing 

For every x, the integrand is maximized at 𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝑔(𝑥)

(alog(y)+blog(1-y) is maximized at a/(a+b) using calculus)
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Reformulating the cost function
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Divide each of the terms by two in order to get an expression in terms of KL
divergences



(Jensen-Shannon divergence)

𝐽𝑆𝐷(𝑃| 𝑄 =
1

2
(𝐾𝐿(𝑃||

𝑃+𝑄

2
) + 𝐾𝐿(𝑄||

𝑃+𝑄

2
))

• Another measure of how similar P and Q are

• Symmetric, unlike the KL divergence
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Wasserstein Distance

• 𝑊 𝑃,𝑄 = inf
𝛾∈Π(𝑃,𝑄)

𝐸 𝑥,𝑦 ~𝛾[|𝑥 − 𝑦|]

• Π(𝑃, 𝑄) is the set of distributions over 
𝑅dim 𝑃 +dim(𝑄) whose marginal are P and Q. For 
𝛾 ∈ Π 𝑃, 𝑄 , and densities p and Q for P, Q

׬ 𝛾(𝑥, 𝑦) 𝑑𝑥 = 𝑞(𝑦), ׬ 𝛾 𝑥, 𝑦 𝑑𝑦 = 𝑝(𝑥)
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Wasserstein Distance intuition

• 𝑊 𝑃,𝑄 = inf
𝛾∈Π(𝑃,𝑄)

𝐸 𝑥,𝑦 ~𝛾[|𝑥 − 𝑦|] =

inf
𝛾∈Π(𝑃,𝑄)

׬ |𝑥 − 𝑦|𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦
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Wasserstein Distance intuition

inf
𝛾∈Π(𝑃,𝑄)

න|𝑥 − 𝑦|𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

• Want to move 𝛾(𝑥, 𝑦) from x to y

• In total, move ׬ 𝛾 𝑥, 𝑦 𝑑𝑦 = 𝑝(𝑥) from x

move ׬ 𝛾 𝑥, 𝑦 𝑑𝑥 = 𝑞(𝑦) to y

so we  don’t run out of mass
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Wasserstein Distance dual 
formulation
• Theorem (Kantorovich-Rubinestein): 

𝑊 𝑃,𝑄 = sup
𝑓

𝐿
≤1

|𝐸𝑥~𝑃 𝑓 𝑥 − 𝐸𝑦~𝑄 𝑓 𝑦 |

• A function is K-Lipschitz if for all x, y 
𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐾|𝑥 − 𝑦|

we write this as 𝑓
𝐿
≤ 𝐾

• Proof: 
https://drive.google.com/file/d/0B6JeBUquZ5BwVl
V1dEpsTHVVbTA/view?usp=sharing&resourcekey=0
-5xbvKhDXZjrYRLfqppsHuQ p. 121
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Motivating example

• Let 𝑍~𝑈𝑛𝑖𝑓( 0, 1 )

• Let 𝑃𝜃 be the distribution 𝜃, 𝑍 ∈ 𝑅2

• 𝑊 𝑃0, 𝑃𝜃 = |𝜃|
• Using the original definition, need to move the 

probability mass by |𝜃|

• 𝐽𝑆 𝑃0, 𝑃𝜃 =
1

2
(𝐾𝐿(𝑃0||

𝑃0+𝑃𝜃

2
) + 𝐾𝐿(𝑃𝜃||

𝑃0+𝑃𝜃

2
)) 

= log 2 if 𝜃 ≠ 0, and 0 otherwise
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Derivation for 𝐾𝐿(𝑃0||
𝑃0+𝑃𝜃

2
)

𝐾𝐿(𝑃0||
𝑃0+𝑃𝜃

2
𝑝0׬=( 𝑥, 𝑦 log

𝑝0(𝑥,𝑦)

((𝑝0+𝑝𝜃)/2)(𝑥,𝑦)
𝑑𝑥𝑑𝑦

𝑝0(𝑥, 𝑦) is only non-zero x=0, 𝑝𝜃(𝑥, 𝑦) is only non 
zero at 𝑥 = 𝜃 so the integral equals

න𝑝0 𝑥, 𝑦 log
𝑝0(𝑥, 𝑦)

(𝑝0/2)(𝑥, 𝑦)
𝑑𝑥𝑑𝑦

= න𝑝0 𝑥, 𝑦 log 2 𝑑𝑥𝑑𝑦 = log 2
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Motivating example

• The JS distance does not provide gradient signal in 
the motivating example

• The Wasserstein distance does

• In the motivating example, the support for the two 
distribution is disjoint
• That may be unusual

• But it is not unusual for the distribution to be supported 
by different low-dimensional manifolds that intersect 
but otherwise don’t overlap
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Gradient visualization

https://cs182sp21.github.io/s
tatic/slides/lec-19.pdf



The Wasserstein GAN

• 𝑊 𝑃,𝑄 = sup
𝑓

𝐿
≤1

|𝐸𝑥~𝑃 𝑓 𝑥 − 𝐸𝑦~𝑄 𝑓 𝑦 |

• Make P the data distribution, and Q the generator 
distribution

• Make 𝑓𝑤 be K-Lipschitz
• Can do that by clipping all the weights to be in e.g [-0.01, 01]
• Sketch of argument: the set of all functions is a closed set that way, 

so a function with a maximum K is somewhere in that closed set
• Another argument: the first layer transforms the input by 𝑊(1), the 

second by 𝑊(2), 𝑒𝑡𝑐. This is at most a small linear transformation 
for clipped weights, so the function is K-Lipschitz

• If we find the sup for a K-Lipschitz function, a sup is actually 
attained for 𝑓 = 𝑓/|𝐾|
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The Wasserstein GAN

• max
𝑤∈𝑊

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎𝑓𝑤 𝑥 − 𝐸𝑧~𝑝 𝑧 𝑓𝑤 (𝑔𝜃 𝑧 )

• Alternately optimize the objective and the critic 𝑓𝑤
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Intuition: Wasserstein GAN

• Theory says that we get a more informative 
gradient w.r.t 𝜃

• The critic is not allowed to overfit because of 
clipping
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Reminder: RMSProp
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Better ways of ensuring 𝑓𝜃 is K-
Lipschitz 
• Penalize the gradient of 𝑓𝜃 directly: optimize

• Normalize the weights matrices by the matrix’s 
largest singular value
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