Wasserstein GAN

ECE324, Winter 2023

Michael Gu?rzhoy

https://c5236g.stanford.edu/memes/l/

Key points

* The Wasserstein GAN training algorithm is similar
to GAN, but it constrains the discriminator

* Making the discriminator more constrained helps the
generator train

* To invent WGAN, Martin Arjovski reformulated the
cost function of the GAN as minimizing the distance
between the generator distribution and the data
distribution

 He then used a different notion of distance to derive
WGAN

Pre-requisites

 Understand what “data distribution” and
“generator distribution” are

* The probability distributions over the samples implied
by the training data and the data generated by the
generator

e Understand the Min-Max formulation of the GAN
cost function

* Understand the operation of marginalizing
distributions

* Gradient descent + moment in neural networks

Connections to what you have
seen

* The KL divergence is very similar to the cross-
entropy cost function
* The cross-entropy cost function measures the difference

between the target labels and the outputs of the
network

Heavy math ahead, optional math
N green

The objective function of the
original GAN

* For a fixed generator G, the optimal discriminator is

Pdata 'L L -I

Dg(z) = , -.
Pdeata i-ﬂ]' T P r*E !

* Proof: we are maximizing
i-"{(}'.ﬂ}:/

N o]

Paaa|®) log(D))dx + /;Jz[z] log(1l — Dig(z)))dz

- / Paaal2) log(D(x)) + pylx) log(l — D))dx

For every x, the integrand is maximized at —Pdata)
Pdata(X)+Dgx)

(alog(y)+blog(1-y) is maximized at a/(a+b) using calculus)

Reformulating the cost function

C(G) = max ViG, D)

=Eanpy 108 D (€)] + Eznp, [log(1 — D5 (G(2)))]
ZIE":EH»IJ.J.,..J [l{']g U{:I{EJ T E:E-wp_.f [IU-H-[I o L}E: {‘T}j

P () Py(x) }
:EEW ; log [Emﬁ-u- > 1 54 .
P [”g Pa () —I—]'.i'g,fE]I] TR, l” Paaa () + pg()

Divide each of the terms by two in order to get an expression in terms of KL
divergences

Pdata + Pg) LKL (pg

Pdata + Pg
2

= —log(4) +2- JSD (pagaa ||pg)

(Jensen-Shannon divergence)

1 P P
JSD(P|1Q) = 7 (KL(P|| =2) + KL(Q|| =)
e Another measure of how similar P and Q are

* Symmetric, unlike the KL divergence

Wasserstein Distance

*W(P,Q) = yell[r(llg,Q) E(x,y)~y[|x —yl]

* [I(P, Q) is the set of distributions over

R4Im(P)+dim(Q) \yhose marginal are P and Q. For
y € II(P, Q), and densities p and Q for P, Q

| vye,y)dx=qW), | v y)dy =p(x)

Wasserstein Distance intuition

* W(P,Q) = yell[r(lIg,Q) E(x,y)~y[|x -yl =

inf X — x,y)dxd
Jeinf o J 1 = yly(x y)dxdy

(1) - /xj’__wftx'] (1) fu)
i / \ \'.
o~/ \
¥ |
A0 j('q M\TI\ ﬂh]
19 Fi (A v
I'. ..' | ‘\.
MW CRY '\
) A 1)
Vo
4 |
| d4 |
—_— %
L-T(x)
https://kowshikchilamkurthy.medium.com/wasserstein-distance-contraction
theory-93e f740ae867

-mapping-and-modern-rl-

10

Wasserstein Distance intuition

inf X — x,y)dxd
yel‘[(P,Q)fl yly(x,y)dxdy

* Want to move y(x,y) fromxtoy
* In total, move [y(x,y)dy = p(x) from x

move [y(x,y)dx = q(y) toy
so we don’t run out of mass

Wasserstein Distance dual
formulation

* Theorem (Kantorovich- Rublnesteln)

w(P, Q) “]§|1|1p 1 |Ex~plf ()] — E, ol f W]

* A function is K-Lipschitz if for all x, y
[f(x) = fW < K|x -y
we write this as Hf||L <K

* Proof:
https://drive.google.com/file/d/0B6JeBUquZ5BwVI

V1dEpsTHVVDbTA/view?usp=sharing&resourcekey=0
-5xbvKhDXZjrYRLfgppsHuQ p. 121

12

https://drive.google.com/file/d/0B6JeBUquZ5BwVlV1dEpsTHVVbTA/view?usp=sharing&resourcekey=0-5xbvKhDXZjrYRLfqppsHuQ
https://drive.google.com/file/d/0B6JeBUquZ5BwVlV1dEpsTHVVbTA/view?usp=sharing&resourcekey=0-5xbvKhDXZjrYRLfqppsHuQ
https://drive.google.com/file/d/0B6JeBUquZ5BwVlV1dEpsTHVVbTA/view?usp=sharing&resourcekey=0-5xbvKhDXZjrYRLfqppsHuQ

Motivating example

e Let Z~Unif (|0,1])
* Let Py be the distribution (8, Z) € R?
* W(Py, Pg) = |6]

* Using the original definition, need to move the
probability mass by |0

1
* JS(Po, Pg) = = (KL(Po| "2) + KL(Pg||
= log2if 0 # O, and 0 otherW|se

Py+Pg P0+Pg

)

Py +Pg)
2
Py+Pg

_ Po(X,Y)
KL(Po 175702 po e) log g ey XY

po(x,y) is only non-zero x=0, pg (x,y) is only non
zero at x = 0 so the integral equals

f po(x,) log oY)
’ (po/2)(x,y)

Derivation for KL (P,

dxdy

= fpo(x, y)log 2 dxdy = log 2

Motivating example

* The JS distance does not provide gradient signal in
the motivating example

e The Wasserstein distance does

* In the motivating example, the support for the two
distribution is disjoint
e That may be unusual

e Butitis not unusual for the distribution to be supported
by different low-dimensional manifolds that intersect
but otherwise don’t overlap

Gradient visualization

p(x)
: : Pdata () v) : : pe(x)
/ \ m

real data generated data

what is the generator gradient here?

plx)
D(x) /
pdata(l')

better D(x)

D(x)
better pgagite)

better pg(x)

_— Pdatal® G (T)

nups://cs182sp21.github.io/s
tatic/slides/lec-19.pdf

The Wasserstein GAN

* W(P,Q) = sup |Ex_plf(x)] —Ey_olf ()]l
|I£1], =1
 Make P the data distribution, and Q the generator
distribution

* Make f,, be K-Lipschitz
e Can do that by clipping all the weights to be in e.g [-0.01, 01]

» Sketch of argument: the set of all functions is a closed set that way,
so a function with a maximum K is somewhere in that closed set

« Another argument: the first layer transforms the input by W the
second by W@, etc. This is at most a small linear transformation
for clipped weights, so the function is K-Lipschitz

* If we find the sup for a K-Lipschitz function, a sup is actually
attained for f = f/|K]|

17

The Wasserstein GAN

¢ Imnax Expyueaw(X) — Ezpfw (9o(2))

* Alternately optimize the objective and the critic f,,

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritic = 5.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Nerities the number of iterations of the critic per generator iteration.
Require: : w, initial critic parameters. 6, initial generator’s parameters.
1: while # has not converged do
2: for t =0,...; Neritic do

3 Sample {z()}™, ~ P, a batch from the real data.
4 Sample {z(V}™ ~ p(z) a batch of prior samples.
5: gw — Vi [& 2is fu@W) = 232, fulge(z'))]
6: w < w + a - RMSProp(w, g.,)

7 w + clip(w, —¢, ¢)

8 end for

9 Sample {z"'}™ | ~ p(z) a batch of prior samples.

10: ge < _VO,_:, Z:,;l f'w(.qO(‘z(i)))
11: 0 < 0 — o - RMSProp(0, gg)
12: end while

19

Intuition: Wasserstein GAN

* Theory says that we get a more informative
gradient w.r.t 6

 The critic is not allowed to overfit because of
clipping

Reminder: RMSProp

* rmsprop: Keep a moving average of the squared gradient for each weight

2
MeanSquare(w, t) =0.9 MeanSquare(w, t—1) + 0.1 (a%w (t))

* Dividing the gradient by \/MeanSquare(w, 1) makes the learning work much
better (Tijmen Tieleman, unpublished).

21

Better ways of ensuring fg is K-
Lipschitz
* Penalize the gradient of fg directly: optimize

Eonpauafo(2) = M[Va fo(@)ll2 = 1)°] = Eznp(e) [fo(G(2))]

T

make norm of gradient close to 1

* Normalize the weights matrices by the matrix’s
largest singular value

] H'[/Lth ‘r/-\ ‘ r
o(W) = max = max ||[Wh| largest singular value of W
h:h#0 || Rl ||h]]<1
W, « ﬂﬁ{f;‘} https://cs182sp21.github.io/static/slides/lec-

19.pdf

	Slide 1: Wasserstein GAN
	Slide 2: Key points
	Slide 3: Pre-requisites
	Slide 4: Connections to what you have seen
	Slide 5: Heavy math ahead, optional math in green
	Slide 6: The objective function of the original GAN
	Slide 7: Reformulating the cost function
	Slide 8: (Jensen-Shannon divergence)
	Slide 9: Wasserstein Distance
	Slide 10: Wasserstein Distance intuition
	Slide 11: Wasserstein Distance intuition
	Slide 12: Wasserstein Distance dual formulation
	Slide 13: Motivating example
	Slide 14: Derivation for cap K cap L open paren cap P sub 0 , vertical bar vertical bar numerator , cap P sub 0 plus cap P sub theta end numerator , over 2 close paren
	Slide 15: Motivating example
	Slide 16: Gradient visualization
	Slide 17: The Wasserstein GAN
	Slide 18: The Wasserstein GAN
	Slide 19
	Slide 20: Intuition: Wasserstein GAN
	Slide 21: Reminder: RMSProp
	Slide 22: Better ways of ensuring f sub theta is K-Lipschitz

