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Key points

* The Wasserstein GAN training algorithm is similar
to GAN, but it constrains the discriminator

* Making the discriminator more constrained helps the
generator train

* To invent WGAN, Martin Arjovski reformulated the
cost function of the GAN as minimizing the distance
between the generator distribution and the data
distribution

 He then used a different notion of distance to derive
WGAN



Pre-requisites

 Understand what “data distribution” and
“generator distribution” are

* The probability distributions over the samples implied
by the training data and the data generated by the
generator

e Understand the Min-Max formulation of the GAN
cost function

* Understand the operation of marginalizing
distributions

* Gradient descent + moment in neural networks



Connections to what you have
seen

* The KL divergence is very similar to the cross-
entropy cost function
* The cross-entropy cost function measures the difference

between the target labels and the outputs of the
network



Heavy math ahead, optional math
N green




The objective function of the
original GAN

* For a fixed generator G, the optimal discriminator is
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Reformulating the cost function

C(G) = max ViG, D)
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Divide each of the terms by two in order to get an expression in terms of KL
divergences
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(Jensen-Shannon divergence)

1 P P
JSD(P|1Q) = 7 (KL(P|| =2) + KL(Q|| =)
e Another measure of how similar P and Q are

* Symmetric, unlike the KL divergence



Wasserstein Distance

*W(P,Q) = yell[r(llg,Q) E(x,y)~y[|x —yl]

* [I(P, Q) is the set of distributions over

R4Im(P)+dim(Q) \yhose marginal are P and Q. For
y € II(P, Q), and densities p and Q for P, Q

| vye,y)dx=qW), | v y)dy =p(x)



Wasserstein Distance intuition

* W(P,Q) = yell[r(lIg,Q) E(x,y)~y[|x -yl =

inf X — x,y)dxd
Jeinf o J 1 = yly(x y)dxdy
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Wasserstein Distance intuition

inf X — x,y)dxd
yel‘[(P,Q)fl yly(x,y)dxdy

* Want to move y(x,y) fromxtoy
* In total, move [ y(x,y)dy = p(x) from x

move [ y(x,y)dx = q(y) toy
so we don’t run out of mass




Wasserstein Distance dual
formulation

* Theorem (Kantorovich- Rublnesteln)
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* A function is K-Lipschitz if for all x, y
[f(x) = fW < K|x -y
we write this as Hf||L <K

* Proof:
https://drive.google.com/file/d/0B6JeBUquZ5BwVI

V1dEpsTHVVDbTA/view?usp=sharing&resourcekey=0
-5xbvKhDXZjrYRLfgppsHuQ p. 121
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Motivating example

e Let Z~Unif (|0,1])
* Let Py be the distribution (8, Z) € R?
* W(Py, Pg) = |6]

* Using the original definition, need to move the
probability mass by |0

1
* JS(Po, Pg) = = (KL(Po| "2) + KL(Pg||
= log2if 0 # O, and 0 otherW|se

Py+Pg P0+Pg

)



Py +Pg)
2
Py+Pg

_ Po(X,Y)
KL(Po 175702  po e ) log g ey XY

po(x,y) is only non-zero x=0, pg (x,y) is only non
zero at x = 0 so the integral equals

f po(x, ) log oY)
’ (po/2)(x,y)

Derivation for KL (P,

dxdy

= fpo(x, y)log 2 dxdy = log 2



Motivating example

* The JS distance does not provide gradient signal in
the motivating example

e The Wasserstein distance does

* In the motivating example, the support for the two
distribution is disjoint
e That may be unusual

e Butitis not unusual for the distribution to be supported
by different low-dimensional manifolds that intersect
but otherwise don’t overlap



Gradient visualization
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The Wasserstein GAN

* W(P,Q) = sup |Ex_plf(x)] —Ey_olf ()]l
|I£1], =1
 Make P the data distribution, and Q the generator
distribution

* Make f,, be K-Lipschitz
e Can do that by clipping all the weights to be in e.g [-0.01, 01]

» Sketch of argument: the set of all functions is a closed set that way,
so a function with a maximum K is somewhere in that closed set

« Another argument: the first layer transforms the input by W the
second by W@, etc. This is at most a small linear transformation
for clipped weights, so the function is K-Lipschitz

* If we find the sup for a K-Lipschitz function, a sup is actually
attained for f = f/|K]|
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The Wasserstein GAN

¢ Imnax Expyueaw(X) — Ezpfw (9o(2))

* Alternately optimize the objective and the critic f,,



Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritic = 5.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Nerities the number of iterations of the critic per generator iteration.
Require: : w, initial critic parameters. 6, initial generator’s parameters.
1: while # has not converged do
2: for t =0,...; Neritic do

3 Sample {z()}™, ~ P, a batch from the real data.
4 Sample {z(V}™ ~ p(z) a batch of prior samples.
5: gw — Vi [& 2is fu@W) = 232, fulge(z'))]
6: w < w + a - RMSProp(w, g.,)

7 w + clip(w, —¢, ¢)

8 end for

9 Sample {z"'}™ | ~ p(z) a batch of prior samples.

10: ge < _VO,_:, Z:,;l f'w(.qO(‘z(i)))
11: 0 < 0 — o - RMSProp(0, gg)
12: end while
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Intuition: Wasserstein GAN

* Theory says that we get a more informative
gradient w.r.t 6

 The critic is not allowed to overfit because of
clipping



Reminder: RMSProp

* rmsprop: Keep a moving average of the squared gradient for each weight

2
MeanSquare(w, t) =0.9 MeanSquare(w, t—1) + 0.1 (a%w (t))

* Dividing the gradient by \/MeanSquare(w, 1) makes the learning work much
better (Tijmen Tieleman, unpublished).
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Better ways of ensuring fg is K-
Lipschitz
* Penalize the gradient of fg directly: optimize

Eonpauafo(2) = M[Va fo(@)ll2 = 1)°] = Eznp(e) [fo(G(2))]

T

make norm of gradient close to 1

* Normalize the weights matrices by the matrix’s
largest singular value

] H'[/Lth ‘r/-\ ‘ r
o(W) = max = max ||[Wh| largest singular value of W
h:h#0 || Rl ||h]]<1
W, « ﬂﬁ{f;‘} https://cs182sp21.github.io/static/slides/lec-

19.pdf
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