Bayesian Inference about Everything

ECE324, Winter 2023
Michael Guerzhoy

Model Everything

- What is the probability of me (ever) observing a horse that has a horn if unicorns exist?
- $P(I \mid U)=0.9$ (say)
- What is the probability of me (ever) observing a horse that has a horn if unicorns do not exist?
- $P(I \mid \neg U)=0.0001$ (say)
- How to compute those probabilities?
- Model everything in the world: the probability that a quantum fluctuation would create an image of a unicorn on my retina (a physical process), the probability that someone would be able to play this prank on me (a sociological process), the probability that I an hallucinating a unicorn (a psychological process)...
- In practice, just guess

Prior Beliefs about the World

- What is the probability that unicorns exist?
- My prior beliefs about the world, before observing the data
- $P(U)=10^{-10}$
- Now, having observed a unicorn, what do I think about unicorns?

$$
\begin{aligned}
& P(U \mid I)=\frac{P(I \mid U) P(U)}{P(I)}=\frac{P(I \mid U) P(U)}{P(I \mid U) P(U)+P(I \mid \neg U) P(\neg U)} \\
= & \frac{0.9 \times 10^{-10}}{0.9 \times 10^{-10}+0.0001 \times\left(1-10^{-10}\right)} \approx 9 \times 10^{-7}
\end{aligned}
$$

Reminder: Unicorns and Stats

- We can encode out beliefs about what the values of the parameters could be using

$$
P(\theta)
$$

- Using Bayes' rule, we have

$$
P\left(\theta=\theta_{0} \mid \text { data }\right)=\frac{P\left(\theta=\theta_{0}, \text { data }\right)}{P(\text { data })}=\frac{P\left(\text { data } \mid \theta=\theta_{0}\right) P\left(\theta=\theta_{0}\right)}{P(\text { data })}
$$

$$
=\sum_{\theta_{1}} P\left(\text { data } \mid \theta=\theta_{1}\right) P\left(\theta=\theta_{1}\right)
$$

