Learning with Maximum Likelihood

René Magritte, "La reproduction interdite" (1937)

ECE324, Winter 2023

Likelihood: Bernoulli Variables

- Suppose a fair coin is tossed *n* times, independently
 - $Y \sim Bernoulli(\theta)$
- The likelihood (discrete case) is the probability of observing the dataset when the parameters are θ
 - $P(Y_i = 1|\theta) = \theta$
 - $P(Y_i = 1|\theta) = \theta$
 - $P(Y_i = y_i | \theta) = \theta^{y_i} (1 \theta)^{1 y_i}$
 - $P(Y_1 = y_1, Y_2 = y_2, ..., Y_m = y_m | \theta) = \prod_{i=1}^m P(Y_i = y_i | \theta)$
 - Because of independence of cases

Maximum likelihood: Bernoulli

- Suppose we observe the data $Y^{(1)} = y^{(1)}, Y^{(2)} = y^{(2)}, \dots, Y^{(m)} = y^{(m)}$ (*m* i.i.d. Bernoulli variables), and would like to know what θ is
- One possibility: find the θ that maximizes the likelihood function
 - What value of θ makes the data set that we are actually observing (i.e., the training set) the most plausible?
- $P(Y_1 = y_1, Y_2 = y_2, ..., Y_m = y_m | \theta)$ is maximized at $\theta = \frac{1}{m} \sum_{i=1}^m y_i$

Likelihood: Gaussian Noise

• Assume each data point is generated using some process.

• E.g.,
$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}, \ \epsilon^{(i)} \sim N(0, \sigma^2)$$

- We can now compute the likelihood of single datapoint
 - I.e., the probability of the point for a set θ .
 - E.g., $P(y^{(i)}|\theta, x^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)}-\theta^T x^{(i)})^2}{2\sigma^2}\right)$ We can then compute the likelihood for the entire training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ (assuming each point is independent)

• E.g.,
$$P(y|\theta, x) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

Maximum Likelihood

• $P(data|\theta) = P(y|\theta, x) =$ $\Pi_1^m \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2})$ • $\log P(data|\theta) = \sum -\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} + 2m/\log(2\pi\sigma^2)$

is maximized for a value of θ for which $\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$ is minimized

• Note: x is fixed