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Likelihood: Bernoulli Variables

• Suppose a fair coin is tossed 𝑛 times, independently
• 𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

• The likelihood (discrete case) is the probability of 
observing the dataset when the parameters are 𝜃
• 𝑃 𝑌𝑖 = 1 𝜃 = 𝜃

• 𝑃 𝑌𝑖 = 1 𝜃 = 𝜃

• 𝑃 𝑌𝑖 = 𝑦𝑖 𝜃 = 𝜃𝑦𝑖 1 − 𝜃 1−𝑦𝑖

• 𝑃 𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚 𝜃 = ς𝑖=1
𝑚 𝑃 𝑌𝑖 = 𝑦𝑖 𝜃

• Because of independence of cases



Maximum likelihood: Bernoulli

• Suppose we observe the data 𝑌(1) = 𝑦(1), 𝑌(2) =
𝑦(2), … , 𝑌 𝑚 = 𝑦(𝑚) (𝑚 i.i.d. Bernoulli variables), 
and would like to know what 𝜃 is

• One possibility: find the 𝜃 that maximizes the 
likelihood function
• What value of 𝜃 makes the data set that we are actually 

observing (i.e., the training set) the most plausible?

• 𝑃 𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚 𝜃 is maximized at 𝜃 =
1

𝑚
σ𝑖=1
𝑚 𝑦𝑖



Likelihood: Gaussian Noise

• Assume each data point is generated using some process. 

• E.g., 𝑦(𝑖) = 𝜃𝑇𝑥(𝑖) + 𝜖(𝑖),  𝜖(𝑖)~𝑁 0, 𝜎2

• We can now compute the likelihood of single datapoint

• I.e., the probability of the point for a set 𝜃.

• E.g., 𝑃 y 𝑖 𝜃, 𝑥(𝑖) =
1

2𝜋𝜎2
exp −

𝑦 𝑖 −𝜃𝑇𝑥 𝑖 2

2𝜎2
We 

can then compute the likelihood for the entire training 
set  { 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑚 , 𝑦 𝑚 }
(assuming each point is independent)

• E.g., 𝑃 𝑦 𝜃, 𝑥 = Π𝑖=1
𝑚 1

2𝜋𝜎2
exp −

𝑦 𝑖 −𝜃𝑇𝑥 𝑖 2

2𝜎2



Maximum Likelihood

• P data 𝜃 = 𝑃 𝑦 𝜃, 𝑥 =

Π1
𝑚 1

2𝜋𝜎2
𝑒𝑥𝑝(−

𝑦 𝑖 −𝜃𝑇𝑥 𝑖 2

2𝜎2
)

• log 𝑃 𝑑𝑎𝑡𝑎 𝜃 = σ−
𝑦 𝑖 −𝜃𝑇𝑥 𝑖 2

2𝜎2
+ 2𝑚/

log(2𝜋𝜎2)
is maximized for a value of 𝜃 for which

σ𝑖=1
𝑚 𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

is minimized

• Note: x is fixed
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