A Brief Intro to Bayesian Inference

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

CSC324, Winter 2023
Michael Guerzhoy

Tossing a Coin, Again

- Suppose the coin came up Heads 65 times and Tails 35 times. Is the coin fair?
- Model: $P($ heads $)=\theta$
- Log-likelihood: $\log P($ data $\mid \theta)=65 \log \theta+$ $35 \log (1-\theta)$
- Maximized at $\theta=.65$
- But would you conclude that the coin really is not fair?

Prior Distributions

- We can encode out beliefs about what the values of the parameters could be using $P(\theta)$
- Using Bayes' rule, we have

$$
P\left(\theta=\theta_{0} \mid \text { data }\right)=\frac{P\left(\theta=\theta_{0}, \text { data }\right)}{P(\text { data })}=\frac{P\left(\text { data } \mid \theta=\theta_{0}\right) P\left(\theta=\theta_{0}\right)}{P(\text { data })}
$$

$$
=\sum_{\theta_{1}} P\left(\text { data } \mid \theta=\theta_{1}\right) P\left(\theta=\theta_{1}\right)
$$

Maximum a-posteriori (MAP)

- Maximize the posterior probability of the parameter:

$$
\begin{aligned}
& \operatorname{argmax}_{\theta_{0}} \frac{P\left(\text { data } \mid \theta=\theta_{0}\right) P\left(\theta=\theta_{0}\right)}{P(\text { data })} \\
= & \operatorname{argmax}_{\theta_{0}} P\left(\text { data } \mid \theta=\theta_{0}\right) P\left(\theta=\theta_{0}\right) \\
= & \operatorname{argmax}_{\theta_{0}} \log P\left(\text { data } \mid \theta=\theta_{0}\right)+\log P\left(\theta=\theta_{0}\right)
\end{aligned}
$$

- The posterior of probability is the product of the prior and the data likelihood
- Represents the updated belief about the parameter, given the observed data

Aside: Bayesian Inference is a Powerful Idea

- You can think about anything like that. You have your prior belief $P(\theta)$, and you observe some new data. Now your belief about θ must be proportional to $P(\theta) P($ data $\mid \theta)$
- But only if you are 100% sure that the likelihood function is correct!
- Recall that the likelihood function is your model of the world - it represents knowledge about how the data is generated for given values of θ
- Where do you get your original prior beliefs anyway?
- Arguably, makes more sense than Maximum Likelihood

Back to the Coin

- (In Python)

