
CSC321H1S Tutorial: Backprop in RNN (Last update: March 18, 2016) Winter 2016

First, let’s write down the forward pass. The variables are:

• xs the input sequence, encoded using one-hot encoding. Denote it by xt.

• hs the hidden state (a vector), at each time step. Denote it by ht = tanh(W xhxt + W hhht−1)

• ys the output layer. Denote it by yt = W hyht + by

• ps the output of the softmax. Denote it by ŷt = softmax(yt)

• loss the cost/loss function. Cost = −
∑

t log(
∑

k ŷ
k
t x

k
t )

Now, let’s go line by line and interpret those. We will often use e.g. ∂Costt/∂h to denote the contri-
bution from time-step t to the cost function, with C =

∑
tCt for

Ct = log(
∑
k

ŷkt x
k
t ).

dy = np.copy(ps[t])

dy[targets[t]] -= 1 # backprop into y

This is just the derivative of the softmax for Costt:

∂Costt
∂y

= ŷ − x

Note that x is one-hot encoded, so that it’s mostly zeros, with only a single 1 at coordinate targets[t].
That’s why we first set dy to ps (i.e., the ŷ), and then subtract y.

dWhy += np.dot(dy, hs[t].T)

dby += dy

This corresponds to the t-th component of the derivatives wrt W hy and by:

∂Costt/∂W
hy =

∂Costt
∂yt

∂yt
∂W hy

=
∂Costt
∂yt

hTt

∂Costt/∂W
hy =

∂Costt
∂yt

∂yt
∂by

=
∂Costt
∂yt

1 =
∂Costt
∂yt

dh = np.dot(Why.T, dy) + dhnext

This is tricky. We want to account for the influence of ht on both Costt and Cost(t+1):end.

∂Costt:end
∂ht

=
∂Costt
∂ht

+
∂Cost(t+1):end

∂ht
=

∂Costt
∂y

∂y

∂ht
+ dhnext

dhraw = (1 - hs[t] * hs[t]) * dh

∂Costt:end
∂hrawt

= (1 − h2t )
∂Costt:end

∂ht

Dept. of Computer Science, University of Toronto Page 1 of 2



CSC321H1S Tutorial: Backprop in RNN (Last update: March 18, 2016) Winter 2016

The following:
dbh += dhraw

dWxh += np.dot(dhraw, xs[t].T)

dWhh += np.dot(dhraw, hs[t-1].T)

are similar to what we already had. Note that

∂Costt:end
∂ht

=
∂Cost

∂ht

since ht cannot influence components of the cost that come before it in time.
Finally, we compute dhnext, which must be ∂Costt:end

∂ht−1
in order for our earlier definition to work. Now

∂Costt:end
∂ht−1

=
∂Costt:end
∂hrawt

∂hrawt

∂ht−1

This is exactly what the following line does.
dhnext = np.dot(Whh.T, dhraw)

The following is self-explanatory:
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:

np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients

In the loop, we are adding up all the contributions to the gradients from all the time-steps t.

Dept. of Computer Science, University of Toronto Page 2 of 2


