CSC 321 H1S Tutorial: Backprop in RNN (Last update: March 18, 2016) Winter 2016

First, let’s write down the forward pass. The variables are:

xs the input sequence, encoded using one-hot encoding. Denote it by x;.

hs the hidden state (a vector), at each time step. Denote it by h; = tanh(W=hz, + Whh,)

ys the output layer. Denote it by y; = Wh; + b¥

ps the output of the softmax. Denote it by §; = softmaz(y;)
loss the cost/loss function. Cost = — 3", log(>", JFaf)

Now, let’s go line by line and interpret those. We will often use e.g. dCost;/Oh to denote the contri-
bution from time-step ¢ to the cost function, with C' =), C; for

Cy =log(>_ gFay).
k

dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
This is just the derivative of the softmax for Cost;:

0Cost;
Ay
Note that z is one-hot encoded, so that it’s mostly zeros, with only a single 1 at coordinate targets[t].
That’s why we first set dy to ps (i.e., the ¢), and then subtract y.

:y—l‘

dWwhy += np.dot(dy, hs[t].T)
dby += dy
This corresponds to the t-th component of the derivatives wrt W and b¥:

0Costy Oy _ 0Cost; BT
dye OWhy oy °

0Cost; % ~ 0Costy 1— 0Cost;
dyy oY Oy Oy

dCost, |OWM =

dCost, JOWM =

dh = np.dot(Why.T, dy) + dhnext
This is tricky. We want to account for the influence of h; on both Cost; and Cost(;y1):cna-

0C0styeng 0Costy 0C 05t (141):end _ 0Cost; Oy
Ohy O T oh, ay oh, T dhmext

dhraw = (1 - hs[t] * hs[t]) * dh

Dept. of Computer Science, University of Toronto Page 1 of 2

CSC 321 H1S Tutorial: Backprop in RNN (Last update: March 18, 2016) Winter 2016

The following:
dbh += dhraw
dWxh += np.dot(dhraw, xs[t].T)
dWwhh += np.dot(dhraw, hs[t-1].T)
are similar to what we already had. Note that

0Costy.eng OCost
Ohy Ol

since h; cannot influence components of the cost that come before it in time.
Finally, we compute dhnext, which must be % in order for our earlier definition to work. Now

0Costy.ena 0C08tyeng Ohraw
aht,l N Ohmwt 8ht,1

This is exactly what the following line does.
dhnext = np.dot(Whh.T, dhraw)
The following is self-explanatory:
for dparam in [dWxh, dWhh, dwhy, dbh, dbyl:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
In the loop, we are adding up all the contributions to the gradients from all the time-steps t.

Dept. of Computer Science, University of Toronto Page 2 of 2

