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Last time

* We saw how to sample from an RBM
* The weights and biases were fixed



Learning an RBM

* Want to find weights W and biases b and ¢ such
that the probability of the training set

Py b c(x) = TI;Py p o (xD) is maximized

* For a new input z, we hope that Py, ;, .(z) will be
large if z came from the same source as the training
set

* Denote Py, , . = Py
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* Free Energy:

FreeE(x) = — logz exp(—E(x; h'))
hr

* P(x,h) =

,Z = Yyt pry €Xp(—E(x', h'))

exp(—FreeE(x))
Z

,Z =), rexp(—FreeE(x"))

Proof:

exp(—FreeE(x)) = Z exp(—E(x, h’)) o« P(x)

hr

* log P(x) = —FreeE(x) —log )., exp(—FreeE(x"))
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* Can approximate ),.» Pg(x") %FreeE(x’) by only
sampling some x’ from Pg(x'), computing

%FreeE(x’) for those x’, and averaging the

results.

* Note: computing (%F'reeE(x’) is a bit of a pain,
but it’s feasible



Sampling from Pg(x")

e Reminder from last time:
 Guess an initial x’

* Repeat:
e Sample a new h using P(h|x)
e Sample a new x using P(x| h)



Contrastive Divergence

* A shortcut that works really well in practice

e Start from x, a training sample (= higher
probability than for a random guess)

* Sample h given x, then sample a new x’ given that h
* Now, for a single training sample x, use

. 0108 Pg(x) _ —iFreeE(x) + iFreeE(x')
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Approximation for ),,.» Pg(x") % FreeE(x")
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e x“is a “fantasy”/”"dream”/”fake data” generated by
the RBM using the current weights

 Want to make the Free Energy for it large (i.e., want to
make the probability of the dream small)

* X is data from the actual training set

 Want to make the Free Energy for it small (i.e., want to
make the probability of the real training set large)

* This is exactly what gradient ascent will do!

* (A reason to dream: it can make your model of the
world better!)



Deep Belief Networks (not

covered in detail)

 RBM’s stacked on top of
each other

* Train the bottom RBM,
then sample h1 given
each input x to get a
new training set

* Now train the second
RBM from the bottom
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