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Last time

• We saw how to sample from an RBM 
• The weights and biases were fixed



Learning an RBM

• Want to find weights W and biases b and c such 
that the probability of the training set 
𝑃𝑊,𝑏,𝑐 𝒙 = Π𝑖𝑃𝑊,𝑏,𝑐(𝑥

(𝑖)) is maximized

• For a new input z, we hope that 𝑃𝑊,𝑏,𝑐(𝑧) will be 
large if z came from the same source as the training 
set

• Denote 𝑃𝑊,𝑏,𝑐 = 𝑃𝜃



P(x)

• 𝑃 𝑥, ℎ =
exp −𝐸 𝑥,ℎ

𝑍
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• Free Energy:

𝐹𝑟𝑒𝑒𝐸 𝑥 = − log
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Proof:
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• log 𝑃(𝑥) = −𝐹𝑟𝑒𝑒𝐸 𝑥 − logσ𝑥′ exp(−𝐹𝑟𝑒𝑒𝐸(𝑥
′))
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• Can approximate σ𝑥′ 𝑃𝜃 𝑥′
𝜕

𝜕𝜃
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Sampling from 𝑃𝜃 𝑥′

• Reminder from last time:
• Guess an initial x’

• Repeat:
• Sample a new h using P(h|x)

• Sample a new x using P(x|h)



Contrastive Divergence

• A shortcut that works really well in practice

• Start from x, a training sample (     higher 
probability than for a random guess)

• Sample h given x, then sample a new x’ given that h

• Now, for a single training sample x, use

•
𝜕 log 𝑃𝜃(𝑥)
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𝜕 log 𝑃𝜃(𝑥)
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• x‘ is a “fantasy”/”dream”/”fake data” generated by 
the RBM using the current weights
• Want to make the Free Energy for it large (i.e., want to 

make the probability of the dream small)

• x is data from the actual training set
• Want to make the Free Energy for it small (i.e., want to 

make the probability of the real training set large)

• This is exactly what gradient ascent will do!

• (A reason to dream: it can make your model of the 
world better!)



Deep Belief Networks (not 
covered in detail)
• RBM’s stacked on top of 

each other

• Train the bottom RBM, 
then sample h1 given 
each input x to get a 
new training set

• Now train the second 
RBM from the bottom

• …



Some features 
learned in the 
first hidden 
layer of a 
model of all 10 
digit classes 
using 500 
hidden units.


