
Training RBMs

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Slides from Hugo Larochelle,
Geoffrey Hinton, and Yoshua
Bengio

http://deeplearning4j.org/rbm-mnist-tutorial.html

RBM Refresher

𝐸 𝑥, ℎ = −ℎ𝑇𝑊𝑥 − 𝑐𝑇𝑥 − 𝑏𝑇ℎ

= −

𝑗

𝑘

𝑊𝑗𝑘ℎ𝑗𝑥𝑘 −

𝑘

𝑐𝑘𝑥𝑘 −

𝑗

𝑏𝑗ℎ𝑗

𝑃 𝑥, ℎ =
exp −𝐸 𝑥, ℎ

𝑍
, 𝑍 =

(𝑥′,ℎ′)

exp(−𝐸(𝑥′, ℎ′))

𝑃 𝑥 =

ℎ′

𝑃(𝑥, ℎ′)

h, x:
Binary vecs.
(ℎ𝑖 , 𝑥𝑗 ∈ {0,1})

Last time

• We saw how to sample from an RBM
• The weights and biases were fixed

Learning an RBM

• Want to find weights W and biases b and c such
that the probability of the training set
𝑃𝑊,𝑏,𝑐 𝒙 = Π𝑖𝑃𝑊,𝑏,𝑐(𝑥

(𝑖)) is maximized

• For a new input z, we hope that 𝑃𝑊,𝑏,𝑐(𝑧) will be
large if z came from the same source as the training
set

• Denote 𝑃𝑊,𝑏,𝑐 = 𝑃𝜃

P(x)

• 𝑃 𝑥, ℎ =
exp −𝐸 𝑥,ℎ

𝑍
, 𝑍 = σ(𝑥′,ℎ′) exp(−𝐸(𝑥

′, ℎ′))

• 𝑃 𝑥 = σℎ′𝑃(𝑥, ℎ
′) =

exp −FreeE x

Z
, Z = σ𝑥′ exp(−𝐹𝑟𝑒𝑒𝐸(𝑥

′))

• Free Energy:

𝐹𝑟𝑒𝑒𝐸 𝑥 = − log

ℎ′

exp −𝐸 𝑥, ℎ′

Proof:

exp −FreeE x =

ℎ′

exp −𝐸 𝑥, ℎ′ ∝ 𝑃(𝑥)

• log 𝑃(𝑥) = −𝐹𝑟𝑒𝑒𝐸 𝑥 − logσ𝑥′ exp(−𝐹𝑟𝑒𝑒𝐸(𝑥
′))

𝜕 log 𝑃𝜃(𝑥)

𝜕𝜃
•
𝜕 log 𝑃𝜃(𝑥)

𝜕𝜃
=

𝜕

𝜕𝜃
−𝐹𝑟𝑒𝑒𝐸 𝑥 − logσ𝑥′ exp −𝐹𝑟𝑒𝑒𝐸 𝑥′

• = −
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 +
1

σ
𝑥′
exp −𝐹𝑟𝑒𝑒𝐸 𝑥′

σ𝑥′ exp −𝐹𝑟𝑒𝑒𝐸 𝑥′
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

• = −
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 +

1

𝑍
σ𝑥′ exp −𝐹𝑟𝑒𝑒𝐸 𝑥′

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

• = −
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 + σ𝑥′ exp

−𝐹𝑟𝑒𝑒𝐸 𝑥′

𝑍

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

• = −
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 + σ𝑥′ 𝑃𝜃 𝑥′

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

𝜕 log 𝑃𝜃(𝑥)

𝜕𝜃
=−

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 + σ𝑥′ 𝑃𝜃 𝑥′

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

• Can approximate σ𝑥′ 𝑃𝜃 𝑥′
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′ by only

sampling some x’ from 𝑃𝜃 𝑥′ , computing
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′ for those x’, and averaging the

results.

• Note: computing
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′ is a bit of a pain,

but it’s feasible

Sampling from 𝑃𝜃 𝑥′

• Reminder from last time:
• Guess an initial x’

• Repeat:
• Sample a new h using P(h|x)

• Sample a new x using P(x|h)

Contrastive Divergence

• A shortcut that works really well in practice

• Start from x, a training sample (higher
probability than for a random guess)

• Sample h given x, then sample a new x’ given that h

• Now, for a single training sample x, use

•
𝜕 log 𝑃𝜃(𝑥)

𝜕𝜃
≈ −

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 +

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

Approximation for σ𝑥′ 𝑃𝜃 𝑥′
𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

𝜕 log 𝑃𝜃(𝑥)

𝜕𝜃
≈ −

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥 +

𝜕

𝜕𝜃
𝐹𝑟𝑒𝑒𝐸 𝑥′

• x‘ is a “fantasy”/”dream”/”fake data” generated by
the RBM using the current weights
• Want to make the Free Energy for it large (i.e., want to

make the probability of the dream small)

• x is data from the actual training set
• Want to make the Free Energy for it small (i.e., want to

make the probability of the real training set large)

• This is exactly what gradient ascent will do!

• (A reason to dream: it can make your model of the
world better!)

Deep Belief Networks (not
covered in detail)
• RBM’s stacked on top of

each other

• Train the bottom RBM,
then sample h1 given
each input x to get a
new training set

• Now train the second
RBM from the bottom

• …

Some features
learned in the
first hidden
layer of a
model of all 10
digit classes
using 500
hidden units.

