Training RBMs

"h 3

'w:z,

http://deeplearning4j.org/rbm-mnist-tutorial.html

Slides from Hugo Larochelle, CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Geoffrey Hinton, and Yoshua Michael Guerzhoy
Bengio

RBM Refresher
(O’QOOOJ h'_ 2wl g’i:z;ryvecs.

(binary units)
/ (hi, xj € {0,1})
b|as V‘/ «— connection

[O@OOO X « visible layer

(binary units)

E(x,h) = =h"TWx — cTx — bTh

= —ZZ ijhjxk — Z CkXK — Z b]h]
j Kk k J

—E(x, h
exp(Z(x) 4 _ > exp(~E(x',h)

(x',n"

P(x,h) =

P(x) = z P(x,h')
hr

Last time

* We saw how to sample from an RBM
* The weights and biases were fixed

Learning an RBM

* Want to find weights W and biases b and ¢ such
that the probability of the training set

Py b c(x) = TI;Py p o (xD) is maximized

* For a new input z, we hope that Py, ;, .(z) will be
large if z came from the same source as the training
set

* Denote Py, , . = Py

P(x)

exp(—E(x,h))
Z

* P(x) = 2 P(x, 1) =

* Free Energy:

FreeE(x) = — logz exp(—E(x; h'))
hr

* P(x,h) =

,Z = Yyt pry €Xp(—E(x', h'))

exp(—FreeE(x))
Z

,Z =), rexp(—FreeE(x"))

Proof:

exp(—FreeE(x)) = Z exp(—E(x, h’)) o« P(x)

hr

* log P(x) = —FreeE(x) —log)., exp(—FreeE(x"))

d log Pg(x)
a0

dlogPg(x) 0 !
« BP0 — 2 (_FreeE(x) — log X, exp(—FreeE(x")))

)
= —%FfeeE(x) +

X exp(—FreeE(x"))

d 1 ’ i /
¢ = — EFreeE(x) + sz, exp(—FreeE(x")) 3 FreeE(x')
(—FreeE(x’))

Z

D! exp(—FreeE(x’)) % FreeE (x")

%, 0 !
* = ——-FreeE(x) + X, exp 5 FreeE(x")

%, N /
= ——sFreeE(x) + ¥,/ Po(x') .- FreeE(x')

dlogPg(x)_ 0 N O /
Y Y FreeE(x) +)..r Po(x)ae FreeE(x')

* Can approximate),.» Pg(x") %FreeE(x’) by only
sampling some x’ from Pg(x'), computing

%FreeE(x’) for those x’, and averaging the

results.

* Note: computing (%F'reeE(x’) is a bit of a pain,
but it’s feasible

Sampling from Pg(x")

e Reminder from last time:
 Guess an initial x’

* Repeat:
e Sample a new h using P(h|x)
e Sample a new x using P(x| h)

Contrastive Divergence

* A shortcut that works really well in practice

e Start from x, a training sample (= higher
probability than for a random guess)

* Sample h given x, then sample a new x’ given that h
* Now, for a single training sample x, use

. 0108 Pg(x) _ —iFreeE(x) + iFreeE(x')
00 00 a6 ﬁ

Approximation for),,.» Pg(x") % FreeE(x")

dlog Py (x) 0 0 :
5 ~ —%FreeE(x) +%FT€€E(X)

e x“is a “fantasy”/”"dream”/”fake data” generated by
the RBM using the current weights

 Want to make the Free Energy for it large (i.e., want to
make the probability of the dream small)

* X is data from the actual training set

 Want to make the Free Energy for it small (i.e., want to
make the probability of the real training set large)

* This is exactly what gradient ascent will do!

* (A reason to dream: it can make your model of the
world better!)

Deep Belief Networks (not

covered in detail)

 RBM’s stacked on top of
each other

* Train the bottom RBM,
then sample h1 given
each input x to get a
new training set

* Now train the second
RBM from the bottom

O©OOOOOY) hs

REM

@OOPOOQ) ha

|

O©OOOOOY) h

i

O©OOO000) x

model of all 10

Some features
learned in the
digit classes
using 500

first hidden
hidden units.

layer of a

