
Markov Chain Monte Carlo

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Slides from Geoffrey
Hinton and Iain Murray

Motivation

• What to estimate σ𝑊′𝑛𝑒𝑡𝑊′ 𝑥 𝑃(𝑊′|𝑑𝑎𝑡𝑎)

• Strategy: pick W’ randomly according to
P(W’|data), and average all the 𝑛𝑒𝑡𝑊′ 𝑥 we get

• Sampling W’ according to P(W’|data) is hard!
• For most W’, 𝑃(𝑊′|𝑑𝑎𝑡𝑎) is basically equal to 0

• Hard to find the W’ for which 𝑃(𝑊′|𝑑𝑎𝑡𝑎) is not equal
to 0
• Those are the W’ we should pick!

Metropolis Algorithm

• Goal: obtain samples from 𝑃(𝜃)
• I.e., obtain 𝜃 𝑠+1 , 𝜃(𝑠+2), … . , 𝜃(𝑠+𝑚) that are distributed according

to 𝑃 𝜃

Metropolis Algorithm
• 𝜃′~𝑞(𝜃′; 𝜃 𝑠) (Obtain a proposed 𝜃′)

• Simplest q: normal distribution around 𝜃 𝑠 . q must be symmetric:
𝑞(𝜃′; 𝜃 𝑠)=𝑞(𝜃(𝑠); 𝜃′)

• if accept:
• 𝜃(𝑠+1) ← 𝜃′

• else:
• 𝜃(𝑠+1) ← 𝜃(𝑠)

• With 𝑃𝑟𝑜𝑏 𝑎𝑐𝑐𝑒𝑝𝑡 = min 1,
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠

• 𝑃∗ 𝜃 ∝ 𝑃 𝜃
• For Neural Networks, this is proportional to 𝑃(𝑊|𝑑𝑎𝑡𝑎) -- can ignore the

denominator

Metropolis Intuition

𝑃𝑟𝑜𝑏 𝑎𝑐𝑐𝑒𝑝𝑡 = min 1,
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠

• Tries to perturb 𝜃(𝑠) and see if the new 𝜃′ isn’t

more likely
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠 . If it is, accept. If it’s

not, accept with a lower probability

• Makes sure that if 𝜃(𝑠) is sampled according to
𝑃(𝜃), 𝜃(𝑠+1) is as well

Metropolis Intuition

• For large s (i.e., after many steps), 𝑃(𝜃(𝑠)) is likely
large

• In fact 𝜃(𝑠+1), … , 𝜃(𝑠+𝑚) looks like it’s sampled
according to 𝑃(𝜃(𝑠))

• The Metropolis Algorithm is an example of a Monet
Carlo Markov Chain (MCMC) algorithm

Illustration

Adding the q is a
generalization

Sampling weight vectors

• In standard backpropagation
we keep moving the weights in
the direction that decreases
the cost.
• i.e. the direction that

increases the log
likelihood plus the log
prior, summed over all
training cases.

• Eventually, the
weights settle into a
local minimum or get
stuck on a plateau or
just move so slowly
that we run out of
patience.

One method for sampling weight vectors

• Suppose we add some
Gaussian noise to the
weight vector after each
update.
• So the weight vector

never settles down.
• It keeps wandering

around, but it tends to
prefer low cost regions of
the weight space.

• Can we say anything
about how often it will
visit each possible
setting of the weights?

Gibbs Sampling

• Start with 𝜃(1)

• Step t:

• Sample 𝜃1
(𝑡+1)

~𝑃(𝜃1 |𝜃2
𝑡
, 𝜃3

𝑡
, … , 𝜃𝑛

𝑡
)

• Sample 𝜃2
(𝑡+1)

~𝑃 𝜃2 𝜃1
𝑡+1

, 𝜃3
𝑡
, … , 𝜃𝑛

𝑡

• …

• Sample 𝜃𝑛
(𝑡+1)

~𝑃 𝜃𝑛 𝜃1
𝑡+1

, 𝜃2
𝑡+1

, … , 𝜃𝑛−1
𝑡+1

Gibbs Sampling

• Again, can prove that eventually 𝜃(𝑠) will looks like
it was sampled according to P(𝜃)

• Requires being able to easily take samples from

stuff like 𝑃 𝜃2 𝜃1
𝑡+1

, 𝜃3
𝑡
, … , 𝜃𝑛

𝑡

