
How Neural Networks See (Part 1)

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

A Diversion: Neural correlates of
interspecies perspective taking in the
post-mortem Atlantic Salmon

http://prefrontal.org/files/posters/Bennett-
Salmon-2009.pdf

http://www.improbable.com/ig/winners/

Two-Layer Neural Networks for
Image Classification

input vector

(flattened 28x28 image)

outputs (one per object)𝑜0 𝑜4 𝑜9

𝑥1

softmax

… …𝑥20 𝑥784

… …

… … … … … … …

10 objects, all resized to
28x28

(a.k.a. Multinomial Logistic Regression)

𝑊(1,1,0)

𝑏(1,0)

𝑊(1,784,9)

Reminder: Optimizing Neural
Networks
• Use Backpropagation to compute the gradient of the cost

function (e.g., the –log prob. of the correct answer (a.k.a.
cross entropy) w.r.t. the W’s and b’s for the whole training
set, or for a mini-batch of training examples

• Use gradient descent to find the W’s and b’s that minimize
the cost function

• When classifying images, compute the output of the
network for

x=the input image
and the W’s and b’s we found minimizing the cost
function

• Find which output is the largest, or interpret the outputs of
the softmax as the probability estimates for the different
objects

What kind of W’s would minimize
the cost function?
• E.g., the task is the same as in Project 1: classify an

image as one of the 6 actors

Visualizing the W’s
𝑜4

𝑥1 … …𝑥20 𝑥784… … … … … … …

𝑊(1,1,4)

𝑏(1,4)

𝑊(1,784,4)

𝑊(1,20,4)

• For a given output unit, we have the strength of the connections from
each of the inputs

• To understand what the network is doing, we can think of the 𝑊(1,𝑖,4)

as an image

Bracco Vartan

Radcliffe Gilpin

Multinomial Logistic Regression with Early Stopping, 40 examples each

The Dot Product 𝑊(1,∗,𝑗) ⋅ 𝑥

• Note that the input to the unit 𝑜𝑗 is

𝑊(1,∗,𝑗) ⋅ 𝑥 + 𝑏(1,𝑗)

• For a vector 𝑥 of a given magnitude, 𝑊(1,∗,𝑗) ⋅ 𝑥 is
as large as possible when 𝑥 = 𝛼𝑊(1,∗,𝑗)

• I.e., when 𝑥 and 𝑊(1,∗,𝑗) point in the same direction
• (Explanation on the board: the dot product 𝑢 ⋅ 𝑣 is the

length of the projection of 𝑢 onto 𝑣)
• That means that 𝑜𝑗 is larger when 𝑥 looks like 𝑊(1,∗,𝑗),

viewed as images
• (Note: it also means we should make sure all our input x’s are

of similar magnitudes)

Aside: all the input x’s should have
the same magnitude
• If x(1) = 𝛼𝑥(2), they are basically the same image,

just with different contrast and maximum
brightness

• The output of the neural network for 𝑥1 and 𝑥2
should be the same

• Solution: always normalize any input x before
putting it in the dataset

𝑥 →
𝑥

|𝑥|

Aside: Normalizing Data

• Usually, we also want for the mean of all the entries
in x to be 0
• Helps prevent dead neurons (reminder of why on the

board)

• 𝑥 → (𝑥 − 𝑚𝑒𝑎𝑛 𝑥)

• Transformation:

𝑥 →
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑑(𝑥)

• (Note: for mean 𝑥 = 0, 𝑠𝑑 𝑥 = 𝑥 /𝑠𝑞𝑟𝑡(dim 𝑥))

Neural Networks with Hidden Layers

input vector (flattened 28x28

image)

hidden layer (300

hidden units)

outputs (one per object)
𝑜0 𝑜4 𝑜9

ℎ1 ℎ100

𝑥1

softmax

… …

… … … …

𝑥20 𝑥784

ℎ300

… …

𝑊0

𝑊1

Understanding Hidden Layers

• Can visualize 𝑊0 like before

• But what does it mean for the input to e.g. ℎ5 to be
high?
• Depends on how ℎ5 is connected to the output layer!

𝑜0 𝑜4 𝑜9

ℎ1 ℎ100

𝑥1 … …

… … … …

𝑥20 𝑥784

ℎ300

… …

𝑊0

𝑊1

act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization

300 hidden units, 6 actors, 40 examples each, L1-penalized regularization

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization,
128x128 images

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization,
128x128 images

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization,
128x128 images

Hidden Layer Units as Features

• Once we train the neural network, the values units in the
hidden layer should be useful for computing the output
units.

• The weights 𝑊0 between the input layer and the hidden
layer are such that the hidden units are useful

• Think of the hidden units as “features” of the data –
summaries of the data that are useful for computing the
outputs

• In networks with no hidden layer, we simply compute as
many features as there are outputs
• So the “features” should look like the inputs that we are looking for

• (Recall the XOR example: we computed the feature “x1>.5”
and the feature “x2>.5” using hidden units)

