A Brief Intro to Bayesian Inference

Thomas Bayes (c. 1701 – 1761)

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

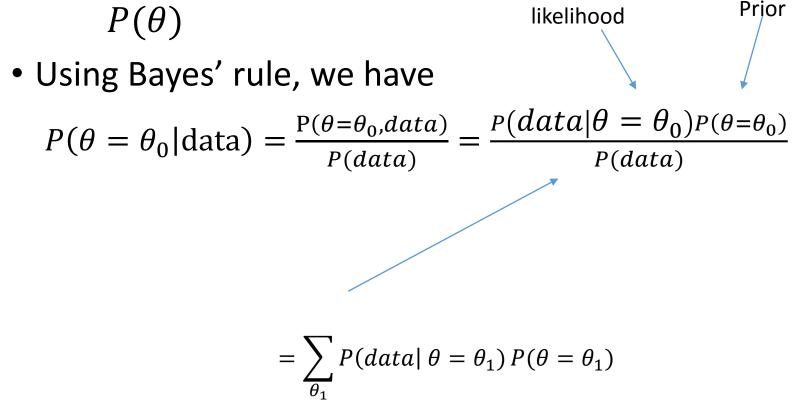
Michael Guerzhoy

Tossing a Coin

- Suppose the coin came up Heads 65 times and Tails 35 times. Is the coin fair?
- Model: $P(heads) = \theta$
- Log-likelihood: $\log P(data|\theta) = 55 \log \theta + 45 \log(1 \theta)$
 - Maximized at $\theta = .65$
- But would you conclude that the coin really is not fair?

Prior Distributions

 We can encode out beliefs about what the values of the parameters could be using



Maximum a-posteriori (MAP)

• Maximize the *posterior probability* of the parameter:

$$argmax_{\theta_0} \frac{P(data | \theta = \theta_0) P(\theta = \theta_0)}{P(data)}$$

$$= argmax_{\theta_0} P(data | \theta = \theta_0) P(\theta = \theta_0)$$

 $= argmax_{\theta_0} \log P(data | \theta = \theta_0) + \log P(\theta = \theta_0)$

- The posterior of probability is the product of the prior and the data likelihood
- Represents the *updated* belief about the parameter, given the observed data

Aside: Bayesian Inference is a Powerful Idea

- You can think about anything like that. You have your prior belief $P(\theta)$, and you observe some new data. Now your belief about θ must be proportional to $P(\theta)P(data|\theta)$
 - But only if you are 100% sure that the likelihood function is correct!
 - Recall that the likelihood function is your model of the world it represents knowledge about how the data is generated for given values of θ
 - Where do you get your original prior beliefs anyway?
- Arguably, makes more sense than Maximum Likelihood

Back to the Coin

• (See bayes.py)

Gaussian Residuals Models

- Log-likelihood: $logP(data|\theta) = \sum_{i=1}^{n} -\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} + \frac{2m}{\log(2\pi\sigma^2)}$
- Suppose we believe that $P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$
 - I.e., the coefficients in θ will generally be in $[-1.5\lambda, 1.5\lambda]$
- $\log[P(data|\theta)P(\theta)]$ is $logP(data|\theta) + \lambda|\theta|^2 + const$ (exercise)
- Maximize $\log[P(data|\theta)P(\theta)]$ to get the θ that you believe the most

Why $P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$

- More on this later
- If the θ_i 's are allowed to be arbitrarily large, the ratio of the influences of the different features over the decision boundary could be arbitrarily high
 - Difficult to believe that one of the features still matters, but it matters a 10000000 times less than some other feature
 - Easy to believe a feature doesn't matter at all, though
 - Mostly when we fit coefficients, they don't get crazy high, so it's a reasonable prior belief