Linear Regression with Multiple Variables

Slides from:

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Andrew Ng

Michael Guerzhoy

Multiple variables (features) predict y

	Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$1000) <i>y</i>
-	2104	5	1	45	460
<i>x</i> ₀ =	1 1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

Notation:

n = number of variables features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_{i}^{(i)}$ = value of feature j in i^{th} training example.

 $x_0\theta_0=\theta_0$

$$h_{\theta}(\boldsymbol{x}) = h_{\theta}(x_0, x_1, x_2, \dots, x_n) = x_0\theta_0 + x_1\theta_1 + \dots + x_n\theta_n = \boldsymbol{\theta}^T \boldsymbol{x}$$

Minimizing this cost function corresponds to minimizing the distance between The observations and the hyperplane defined by $\theta^T X - Y=0$ Reminder about the intuition for this in 2D on the board

Computed Features

It is sometimes useful to compute more features

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Size (x)

$$egin{aligned} h_{ heta}(x) &= heta_0 + heta_1 x_1 + heta_2 x_2 + heta_3 x_3 \ &= heta_0 + heta_1(size) + heta_2(size)^2 + heta_3(size)^3 \ x_1 &= (size) \ x_2 &= (size)^2 \ x_3 &= (size)^3 \end{aligned}$$
 Much beta gotten wit

ter fit than we would have th linear regression

Computed Features Examples – cont'd

Basic Idea:

 $b_{\theta}(depth, frontage) = \theta_0 + \theta_1 depth + \theta_1 frontage$ depth

Better (if the price depends on the area):

 $h_{\theta}(depth, frontage) = \theta_0 + \theta_1 depth + \theta_2 frontage + \theta_3 (frontage \times depth)$

Note: we could not represent the idea that the price is proportional to the area using The basic b_θ

Set:

```
x_0: 1

x_1: depth

x_2: frontage

x_3: depth \times frontage

x_4: depth^2

...
```

(But there is a limit to how much we can do this without *overfitting:* more on that later), and find the best θ such that

 $h_{\theta}(\boldsymbol{x}) = \theta^T \boldsymbol{x}$