
Matching Image Patches: Notes

Michael Guerzhoy

January 8, 2015

1 Introduction

We are trying to solve the problem of matching patches. For example, suppose
we have a grayscale image of an eye (p1), and we would like to try to match it
to every possible patch on Einstein’s photo (refer to slides).

2 Linear Algebra Background

• The (Euclidean) norm of a vector v: |v| =
√

(
∑

i v[i]2). The Euclidean
norm of a vector v is the same as the length of the vector.

• The dot product of the vectors v1 and v2 is v1 · v2 =
∑

i v1[i]v2[i].

• The dot product can also be written as v1 · v2 = |v1||v2| cos θv1,v2 . The
angle θv1,v2

is the angle between v1 and v2. That means we can compute
the angle between v1 and v2 using v1·v2

|v1||v2| .

• We can compute the difference between v1 and v2 by computing v1 − v2.
The difference can be written by coordinate using (v1[0] − v2[0], v1[1] −
v2[1], ...). The norm of the difference is just

√∑
i(v1[i]− v2[i])2.

• Note: the length of the difference between v1 and v2 is the same as the
distances between the endpoints of vectors v1 and v2.

3 Matching Grayscale Patches

Grayscale images are just rectangular tables of numbers, with 0’s representing
completely black pixels, 255’s representing completely white pixels, and number
between 0 and 255 representing various gray pixels. We can rearrange the
numbers so that any patches is a vector – a sequence of numbers.

So the problem of matching patch p1 to patch p2 (i.e., the problem of de-
termining how similar they are) is just (in this view of things) the problem of
determining the similarity between vector p1 and vector p2.

1

4 Patch Distance Metrics

• The Sum of Squared Differences (SSD): this is just the square of the
Euclidean distance between points p1 and p2 (|p1 − p2|, or

∑
i(p1[i] −

p2[i])2). If SSD is 0, the patches are identical. If SSD is large, the patches
are different. Problem: Consider .5p1 – it represents a darker version of
p1, but it’s still the same image, in a way! However, the SSD between p1
and .5p1 can be quite large

• Dot product: we can take the length of the projection of p1 on p2. That’s
p1 · p2 =

∑
i p1[i]p2[i]. The dot product is large when p1 and p2 are

similar. Problem: if p2 = [255, 255, 255, 255, ...], the dot product will be
large regardless of what p1 is, pretty much

• The cosine of the angle between p1 and p2. Can be computed using the
formula cos θp1,p2 = p1·p2

|p1||p2| . This is great, since it will be the largest

for both p1 = p2 and p1 = ap2 for any constant a > 0: so the overall
brightness won’t matter anymore. The images are similar if the cosine of
the angle is close to 1 (so the angle is close to 0), and different if the cosine
of the angle is close 0 (so the angle is close to π/2.

• We still have the problem of the dot product with bright and dark images
being different. To solve that, we make it so that the average intensity
of the patches we are comparing is 0. To achieve, that, we subtract the
mean intensity from the image:

NCC(p1, p2) =
(p1 − µp1

) · (p2 − µp2
)

|p1 − µp1 ||p2 − µp2 |
.

This is called the Zero-Mean Normalized Cross-Correlation (also known
as Pearson’s r, or plain correlation in statistics).

2

