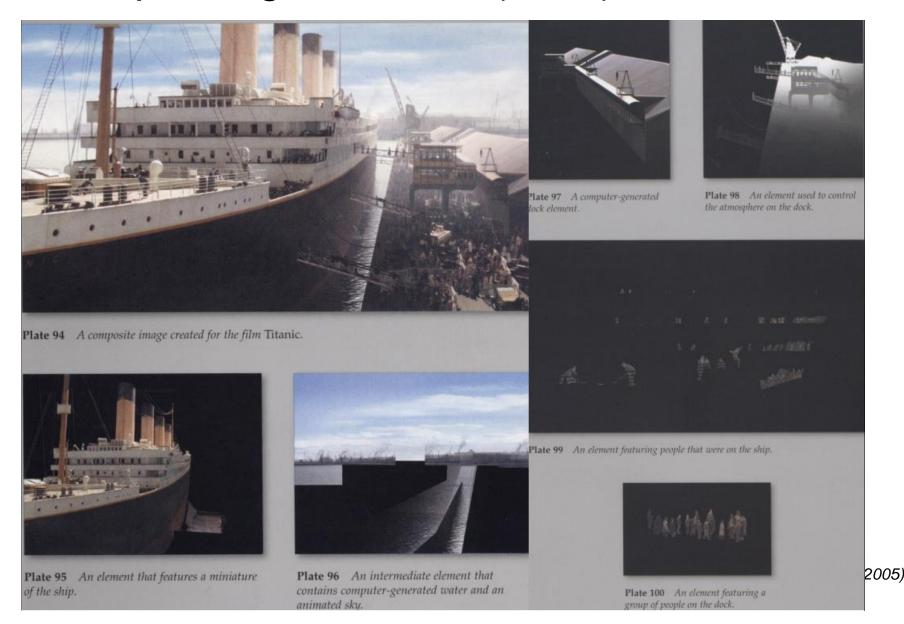
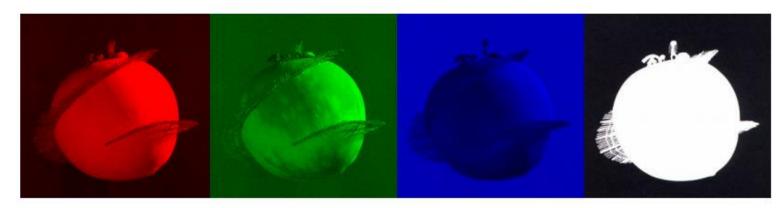
Matting and Compositing

Salvador Dali, Couple with Their Heads Full of Clouds

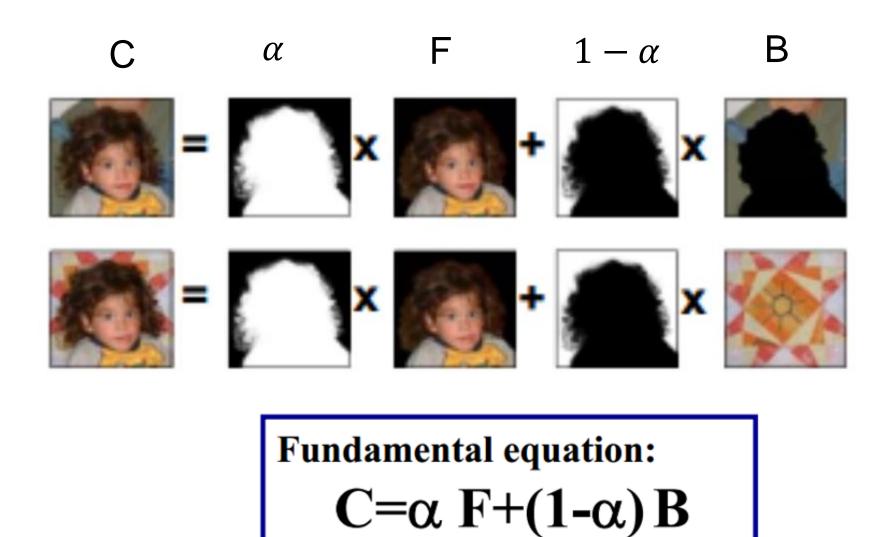

CSC320: Introduction to Visual Computing Michael Guerzhoy

Compositing in Movies: Combining background and Foreground


Compositing for *Titanic* (1997)

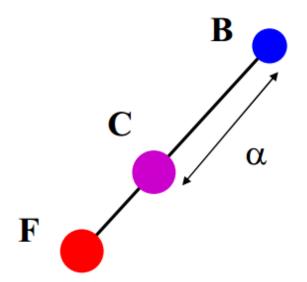
Key Idea: Adding an Alpha Channel

• α : 1 means opaque, 0 means transparent


The Alpha Pixel Component

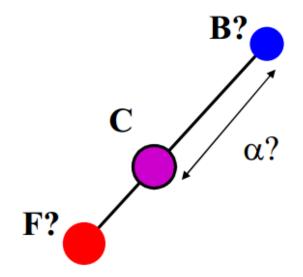
Three rather than 4 components for each pixel:

- The fourth component is the <u>alpha</u> component
 - Value between 0 and 1
 - Defines pixel "transparency"

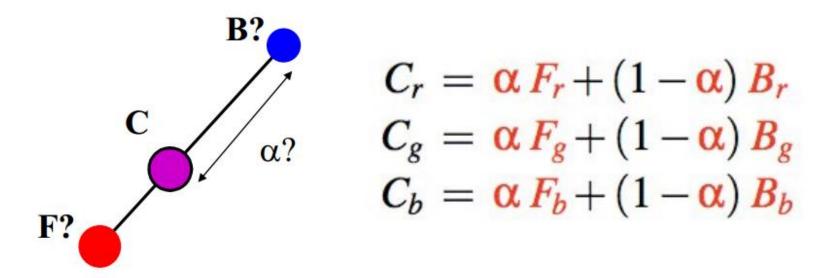

$$\begin{pmatrix} R \\ G \\ B \\ \alpha \end{pmatrix} := \begin{pmatrix} \alpha R \\ \alpha G \\ \alpha B \end{pmatrix}$$

Compositing: background replacement

Compositing


- The variables of interest: Given the foreground color F=(Fr, Fg, Fb), the background color (Br, Bg, Bb) and α for each pixel
- The compositing operation is: $C=\alpha F+(1-\alpha)B$

Note: 0 <= α <= 1 interpolates a color C on the line between F and B


The Matting Problem

- Inverse problem:
 Assume an image is the α-composite of a foreground and a background
- Given an image color C, find F, B and α so that C=α F+(1-α)B

Why is Matting Hard?

- $C=\alpha F+(1-\alpha)B$ Note: this is for every pixel
- How many unknowns, how many equations?

- 7 unknowns, 3 equations
- Bottom line: we need fewer unknowns (or more equations)

Solution 1: Known Background

- If the pixel matches the background, $\alpha = 0$. Otherwise, $\alpha = 1$
- Blue or green background colours typically used

Solution 1: Known Background

Downsides:

- Background colour must be known very accurately and must be constant
- Foreground subject cannot have pixels similar to the background
- No transparent objects/transitions between foreground and background (fractional alpha)

Solution 2: Blue Screen Matting

- Idea: assume there is no blue in the foreground, and only blue in the background
 - Note: because lighting could vary, it's not the case that the background is always (0,0,1) (could be (0,0,0.5))
- Developed by Petro Vlahos (Technical Academy Award 1995) (among others)

Digital Blue Screen Matting

• Assume no blue in foreground, only blue in background: $C_r = \alpha F_r + (1 - \alpha) B_r$

 $C_g = \alpha F_g + (1 - \alpha) B_g$

 $C_b = \alpha F_b + (1 - \alpha) B_b$

$$-F_b = 0, B_r = B_g = 0$$

Equations simplify to

$$C_r = \alpha F_r$$
 $C_g = \alpha F_g$
 $C_b = (1 - \alpha) B_b$

 3 equations with 3 unknowns => can figure out α for every pixel

Blue Screen Matting

Downsides:

- The assumption of no blue in foreground is very restrictive
 - People with blue eyes have the background as their eyes
 - No white, gray, pastel colours allowed either
- Blue/Green Spilling: light reflected off the background hits the foreground, making it be blue/green

Blue spilling (note the fringes)

Plate 52 (b) The element placed into the scene without spill suppression. Note the blue fringes on the subject, particularly in the hair.

Blue spilling (note blue reflected on wings)

Figure 3. Firefox Blue Spill Matte Series 1, original shot. Note blue reflected on wing surfaces from bluescreen -- undesirable but unavoidable on such surfaces.

Bluescreen in Star Wars (2005)

Solution 3: Assume Gray or Skin-Coloured Foreground

Generalize a little
 If we assume object is grey:

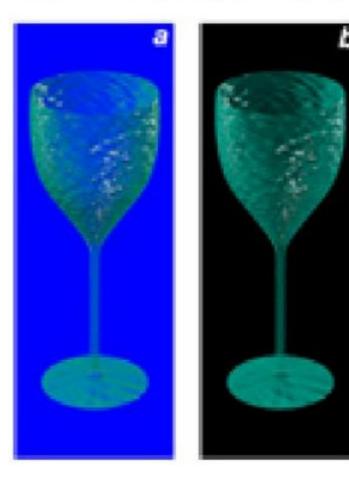
$$F_r = F_g = F_b = F$$
, $B_r = B_g = 0$

Equations simplify to

$$C_r = \alpha F$$
 $C_g = \alpha F$
 $C_b = \alpha F + (1 - \alpha) B_b$

Similar simplification if skin color:

$$F \sim (k, k/2, k/2)$$


Triangulation Matting: Adding More Equations

- Take a picture of the foreground in front of two different background
 - The foreground colour and the alpha are the same
 - Only the background is different

$$C_r = \alpha F_r + (1 - \alpha) B_r$$

$$C_g = \alpha F_g + (1 - \alpha) B_g$$

$$C_b = \alpha F_b + (1 - \alpha) B_b$$

Triangulation Matting: Adding More Equations

$$C_{r1} = \alpha F_r + (1 - \alpha) B_{r1}$$
 $C_{g1} = \alpha F_g + (1 - \alpha) B_{g2}$
 $C_{b1} = \alpha F_b + (1 - \alpha) B_{b2}$
 $C_{r2} = \alpha F_r + (1 - \alpha) B_{r2}$
 $C_{g2} = \alpha F_g + (1 - \alpha) B_{g2}$
 $C_{b2} = \alpha F_b + (1 - \alpha) B_{g2}$

6 equations in 4 unknowns

Triangulation Matting Examples

