Filters and Pyramids



Wassily Kandinsky, "Accent in Pink"

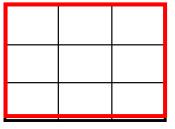
Many slides from Steve Marschner, Alexei Efros

CSC320: Introduction to Visual Computing Michael Guerzhoy

Moving Average In 2D

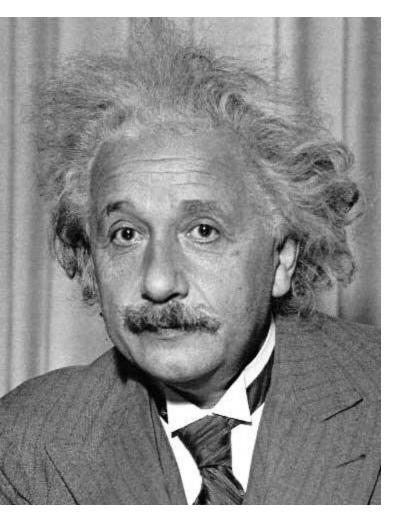
What are the weights H?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	F[:	x, y	/]0	0	0	0



H[u, v]

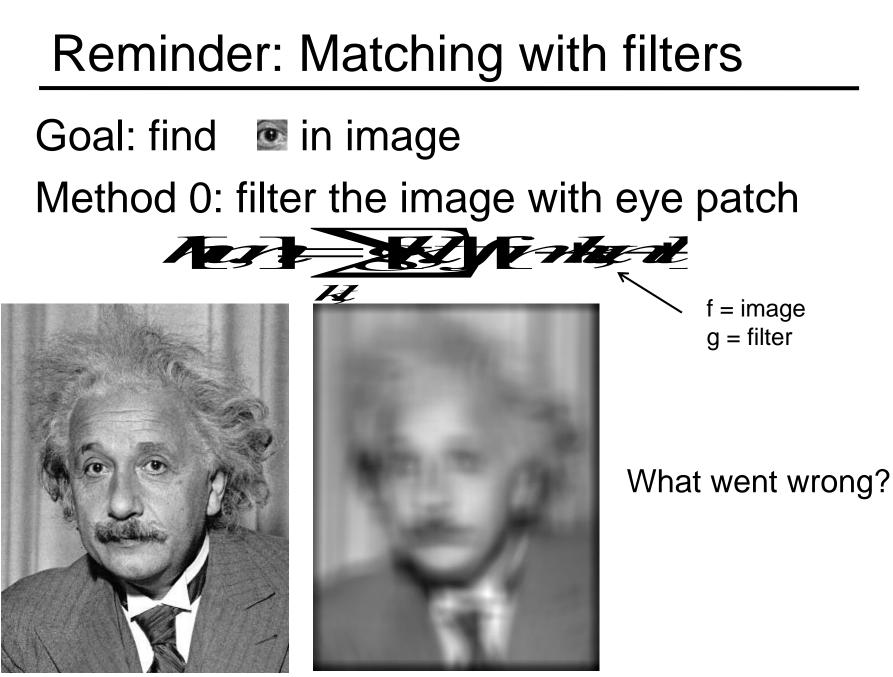
Reminder: Gradient



1	2	1	
0	0	0	
-1	-2	-1	

Sobel

Horizontal Edge (absolute value)



Filtered Image

Side by Derek Hoiem

Input

Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]$$

• We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$$

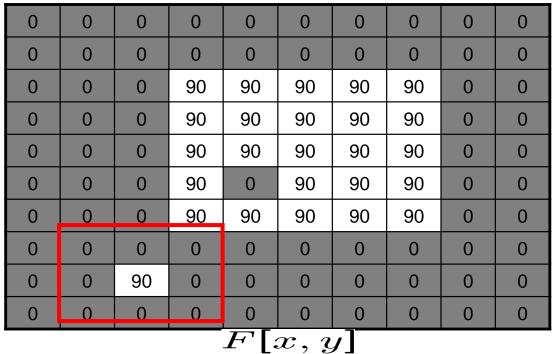
This is called a cross-correlation operation and written:

$$G = H \otimes F$$

• H is called the "filter," "kernel," or "mask."

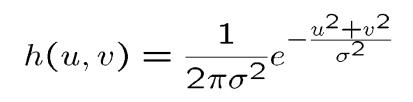
Gaussian filtering

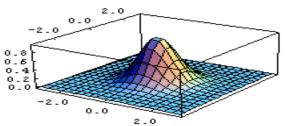
A Gaussian kernel gives less weight to pixels further from the center of the window



1	1	2	1
$\frac{-}{16}$	2	4	2
гU	1	2	1

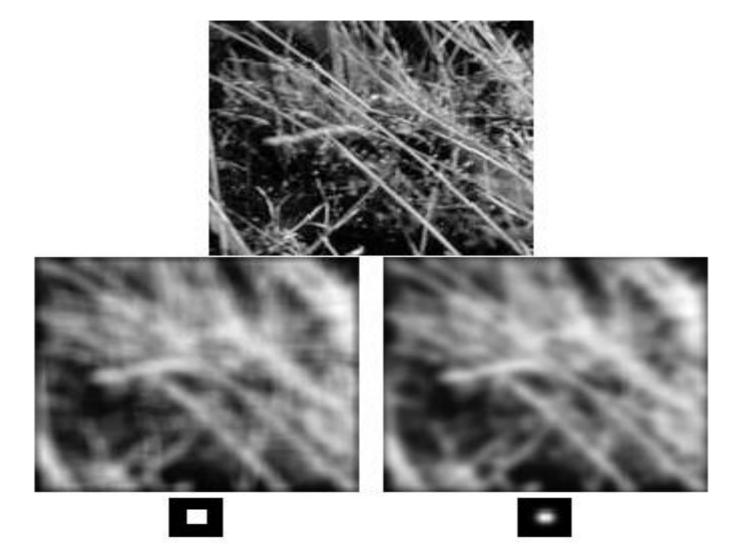
H[u, v]





This kernel is an approximation of a Gaussian functic Slide by Steve Seitz

Mean vs. Gaussian filtering



Mean vs. Gaussian filtering

box filter

gaussian

(Explanation on the blackboard)

Convolution

cross-correlation: $G = H \otimes F$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Convolution is nice!

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b+c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Gaussian filters

Remove "high-frequency" components from the image (low-pass filter)

• Images become more smooth

Convolution with self is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

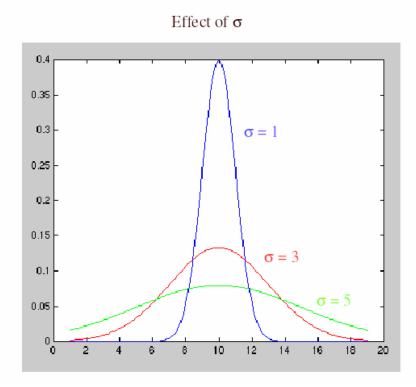
Gaussian filters at different scales

 Note: the camera (thin=high frequency) goes away if sigma is large

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ



Practical matters

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

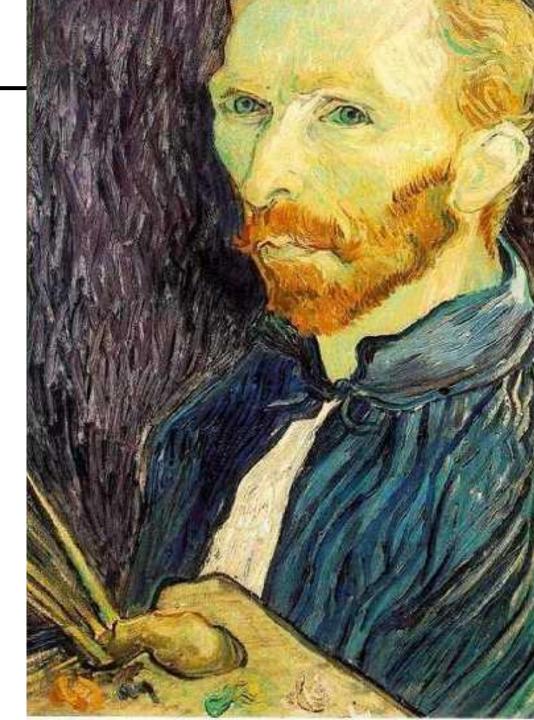
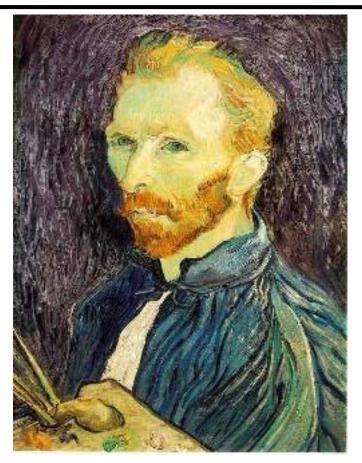


Image sub-sampling

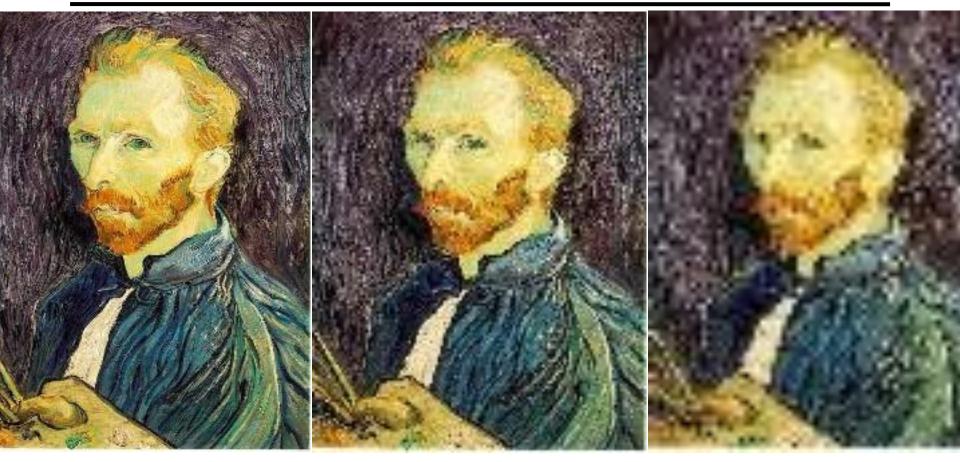


1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

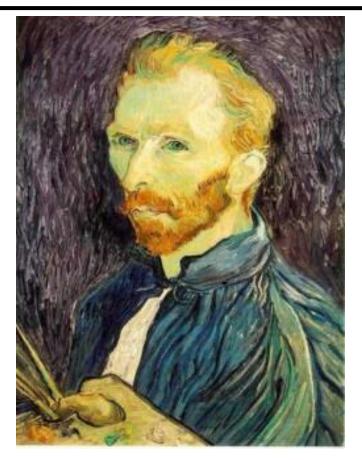
Image sub-sampling



 1/2
 1/4 (2x zoom)
 1/8 (4x zoom)

 Aliasing! What do we do?
 1/8 (4x zoom)

Gaussian (lowpass) pre-filtering





G 1/8

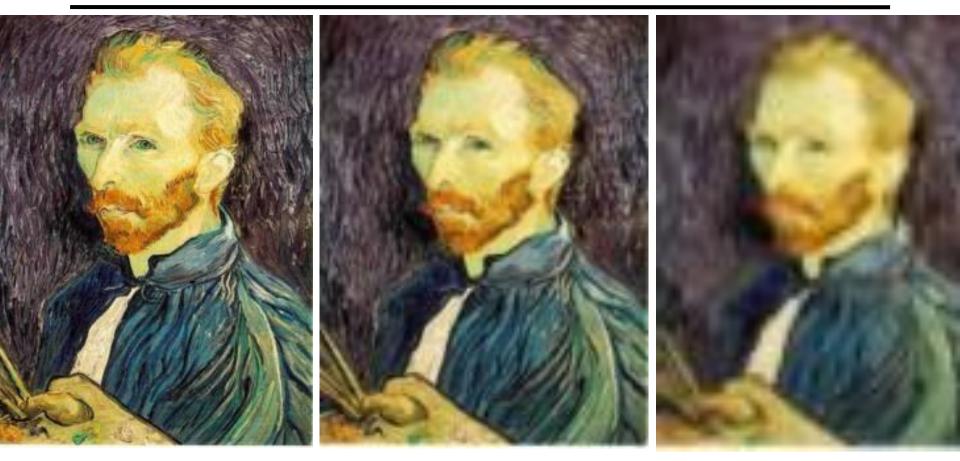
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering

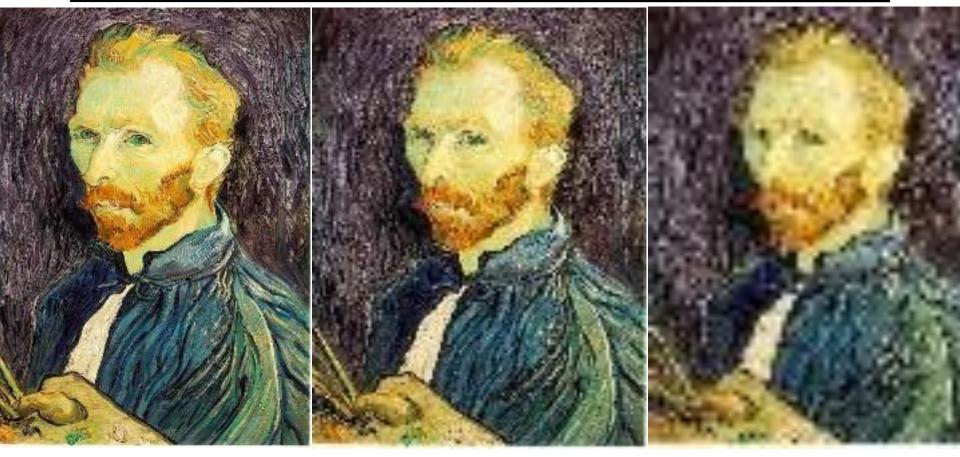


Gaussian 1/2

G 1/4

G 1/8

Compare with...

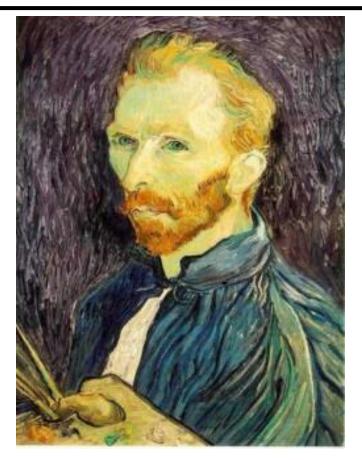


1/2

1/4 (2x zoom)

1/8 (4x zoom)

Gaussian (lowpass) pre-filtering



G 1/8

G 1/4

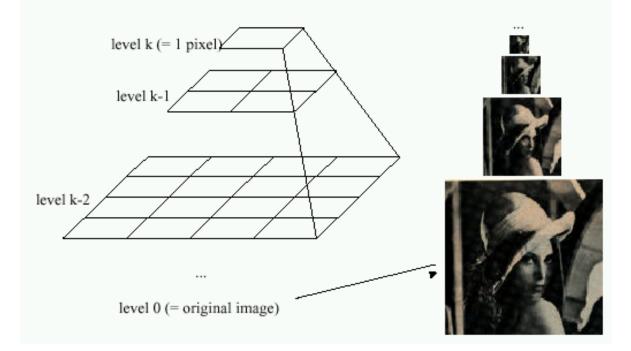
Gaussian 1/2

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Image Pyramids

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

512 256 128 64 32 16 8

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Figure from David Forsyth

What are they good for?

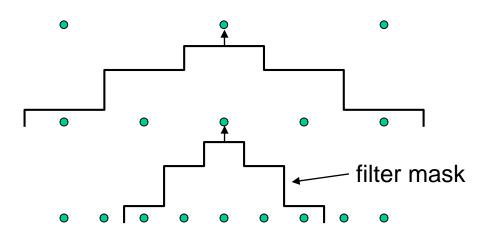
Improve Search

- Search over translations
 - Like project 1
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Pre-computation

- Need to access image at different blur levels
- Useful for texture mapping at different resolutions (called mip-mapping)

Gaussian pyramid construction



Repeat

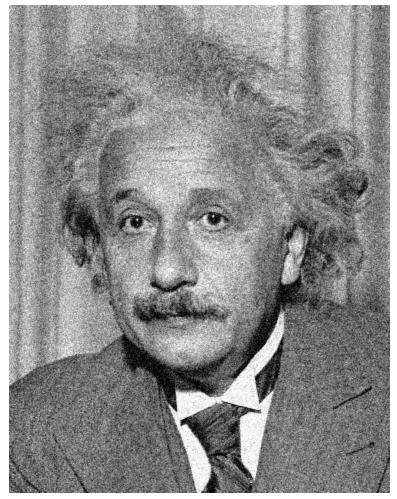
- Filter
- Subsample

Until minimum resolution reached

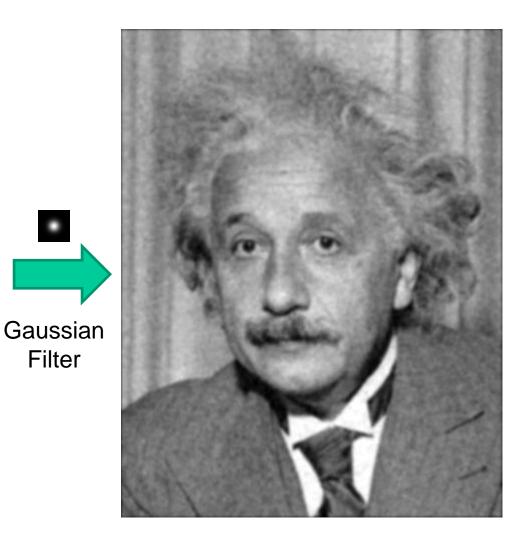
• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Denoising

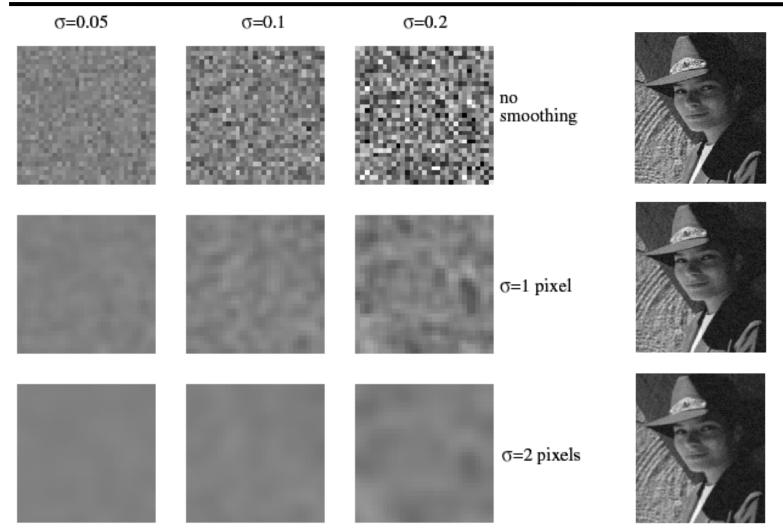


Additive Gaussian Noise



٠

Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing

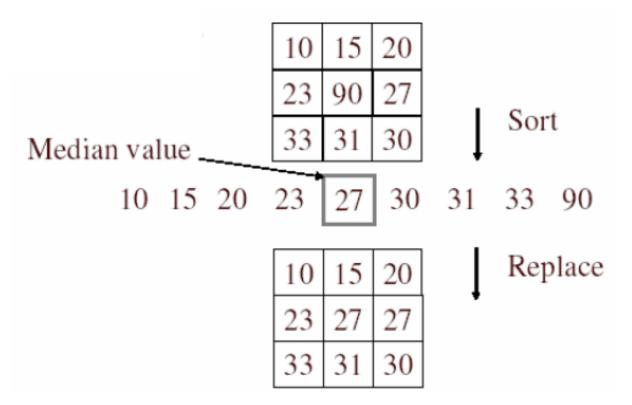
3x3

5x5

7x7

Alternative idea: Median filtering

A **median filter** operates over a window by selecting the median intensity in the window

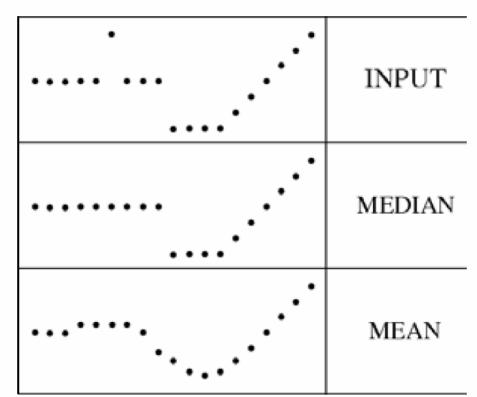


• Is median filtering linear?

Median filter

What advantage does median filtering have over Gaussian filtering?

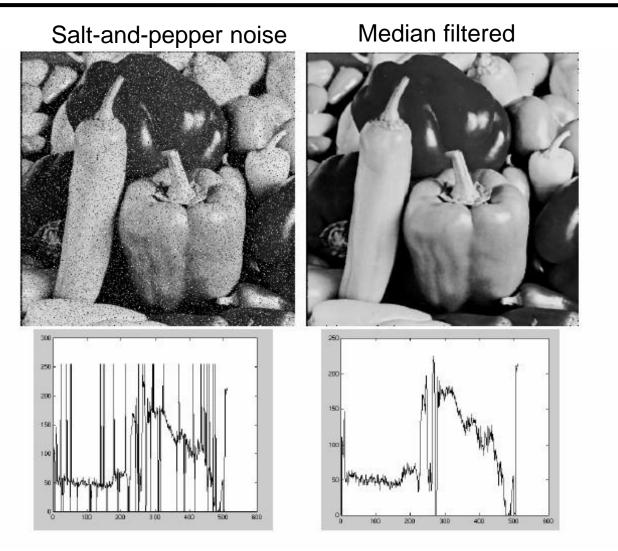
Robustness to outliers



filters have width 5 :

Source: K. Grauman

Median filter



Source: M. Hebert

Median vs. Gaussian filtering

