
Recurrent Neural Networks (RNN)

SML310: Research Projects in Data Science, Fall 2019

Michael Guerzhoy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Some slides from Richard Socher,
Geoffrey Hinton, Andrej Karpathy

Motivating Example: Language Models

• Want to assign probability to a sentence
• “Dafjdkf adkjfhalj fadlag dfah” – zero probability

• “Furiously sleep ideas green colorless” – very low
probability

• “Colorless green ideas sleep furiously” – slightly higher

• “The quick brown fox jumped over the lazy dog” – even
higher

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

Application for Language Models

• Applications
• OCR gives several hypotheses, need to choose the most

probable one

• Choose a plausible translation from English to French

• Complete the sentence “A core objective of a learner is
to generalize from its […]”

• In every case, a language model can be used to
evaluate all the possible hypotheses, and select the
one with the highest probability

Sentence Completion

• Suppose a language model M can compute
𝑃𝑀 𝑤1, 𝑤2, … , 𝑤𝑘

• For an incomplete sentence 𝑤1 𝑤2 𝑤3…𝑤𝑘−1, find
𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑘

𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑘) to complete the
sentence

• Now, fix 𝑤𝑘 , and find
𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑘+1

𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑘 , 𝑤𝑘+1)

Probabilistic Sentence Generation

• 𝑃 𝑤𝑘 𝑤1, 𝑤2, …𝑤𝑘−1 =
𝑃(𝑤1 …𝑤𝑘−1𝑤𝑘)

𝑃(𝑤1…𝑤𝑘−1)
∝ 𝑃 𝑤1 … 𝑤𝑘−1𝑤𝑘

• Choose word 𝑤(𝑗) according to
exp(𝛼 ෠𝑃 𝑤1𝑤2…𝑤𝑘−1𝑤

(𝑗))

σ𝑗 exp(𝛼 ෠𝑃 𝑤1𝑤2…𝑤𝑘−1𝑤
(𝑗))

• (Question: Higher 𝛼 => ?)

• Generally, take ෠𝑃 to be the input to the softmax that produces the
probability in the RNN (better), or simply the probability of the sentence

Generating “Shakespeare”
character-by-character with RNN

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

(Here, the w’s are characters, not words)

Recurrent Neural Networks

𝑥𝑡-the tth character of the string (“the character at time t”)
ℎ𝑡-the tth character of the string (“the character at time t”)

ො𝑦𝑡
ො𝑦𝑡+1

RNN for Language Modelling

• Given a list of word vectors (e.g., one-hot
encodings of words) 𝑥1, … , 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑇
At a single time step:
• ℎ𝑡 = 𝜎 𝑊 ℎℎ ℎ𝑡−1 +𝑊 ℎ𝑥 𝑥𝑡
• ො𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑆 ℎ𝑡)

• ෠𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥1, 𝑥2, … , 𝑥𝑡 = ො𝑦𝑡,𝑗

• ℎ is the state (e.g., the previous
word vector could be part of ℎ)

• 𝑥𝑡 is the data

• ො𝑦𝑡 is the predicted output

ො𝑦𝑡 ො𝑦𝑡+1

ℎ𝑡 = 𝜎 𝑊 ℎℎ ℎ𝑡−1 +𝑊 ℎ𝑥 𝑥𝑡
ො𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊 𝑆 ℎ𝑡
෠𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥1, 𝑥2, … , 𝑥𝑡 = ො𝑦𝑡,𝑗

𝑥𝑡 – the input (one-hot) at t

ො𝑦𝑡 - predictions (vector of probs) at t

Cost Function

• Same as before: negative log-probability of the
right answer:

𝐽(𝑡) = −σ𝑗=1
𝑉 𝑦𝑡,𝑗 log ො𝑦𝑡,𝑗

𝐽 =෍

𝑡

𝐽(𝑡)

• ො𝑦𝑡,𝑗 = 1 iff 𝑥𝑡+1 = 𝑣𝑗

Visualizing the hidden state*

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

*The RNN there is somewhat more complicated than what we saw so far

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

What can we do besides predicting
the next letter in an English text?

• Predict the price of a stock tomorrow

• Predict the diagnosis of a patient tomorrow

• …

