Training Machine Learning Classifiers: Recap

SML310: Research Projects in Data Science, Fall 2019

Michael Guerzhoy

Some slides from Geoffrey Hinton

Training/Validation/Test split

- Split the data into
 - Training set
 - Fit the classifier on the training data
 - Validation set
 - A "mock" test set: train different models, and run them on the validation set; pick the model that works best
 - "Model" can mean neural network architecture, or the parameters of the optimization, or the regularization parameters
 - Test set
 - Data that is held out and not used until the design process is over. Use for evaluating how the model will do on new data.

Kareem 🖖 10x statistician 🖐 Carr @kareem_carr

_ _ _

THIS IS JUST TO SAY

I have trained on the data that was in the test set

and which you were probably saving for validation

Forgive me It reduced my MSE to nearly zero

#datascience #machinelearning #epitwitter #statstwitter

7:29 PM · Jun 18, 2019 · Twitter Web Client

Training process

- For neural networks/logistic regression/linear regression, we train with gradient descent
- Obtain the training and validation cost at every iteration
 - Can also obtain the error (e.g. incorrect classification rate) at every iteration

Learning curves

Learning curves

Stochastic gradient descent

- At every iteration, minimize the cost for a *batch* of data from the training set (rather than the entire training set)
- Easier computationally
- Usually works better
- "Stochastic" because at every iteration, there is a randomness element
 - We are not necessarily decreasing the training cost this way
 - Why?

"Oh sure, going in that direction will totally minimize the objective function" —Sarcastic Gradient Descent.

6:46 PM · Jul 20, 2012 · Twitter for iPhone

288 Retweets 186 Likes

Regularization

- Want to do well on *new* data rather than on the training set
- There is sometimes a tradeoff
- Want to constrain the capacity of the classifier
 - It won't do as well on the training set, but may do well on new data
- Methods
 - Early stopping: take the weights that minimize the cost on the validation set
 - L2 and L1 regularization: minimize cost+lambda*penalty
 - Train and average multiple models
 - Droupout
 - ...
- Usually want to regularize in some way

Belkin et al. (2019)

