Training Machine Learning Classifiers: Recap
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Training/Validation/Test
split

* Split the data into
* Training set
* Fit the classifier on the training data

* Validation set

* A “mock” test set: train different models, and run them on the
validation set; pick the model that works best

* “Model” can mean neural network architecture, or the
parameters of the optimization, or the regularization parameters

* Test set

* Data that is held out and not used until the design process is
over. Use for evaluating how the model will do on new data.
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Training process

* For neural networks/logistic regression/linear
regression, we train with gradient descent

* Obtain the training and validation cost at every
iteration

* Can also obtain the error (e.g. incorrect classification
rate) at every iteration



Learning curves



Learning curves
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Stochastic gradient
descent

* At every iteration, minimize the cost for a batch of
data from the training set (rather than the entire
training set)

* Easier computationally
* Usually works better

* “Stochastic” because at every iteration, there is a
randomness element
* We are not necessarily decreasing the training cost this
way
* Why?
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Regularization

* Want to do well on new data rather than on the training set
* There is sometimes a tradeoff

* Want to constrain the capacity of the classifier
* It won’t do as well on the training set, but may do well on new data

* Methods

* Early stopping: take the weights that minimize the cost on the validation
set

L2 and L1 regularization: minimize cost+lambda*penalty

Train and average multiple models

Droupout

* Usually want to regularize in some way



Belkin et al. (2019)
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