
Overfitting, Capacity Control, and Training Neural
Networks

SML310: Research Projects in Data Science, Fall 2019

Michael Guerzhoy
1

John Klossner, The New Yorker

Some slides from Geoffrey Hinton

Overfitting

• Overfitting happens when the model (e.g., a Neural
Network, or k-NN, or…) models the specific training
set rather than the underlying data from which the
training set is taken
• I.e., because the training set is too small, the network

can do extremely well on the training set by modelling
its peculiarities

2

A Simple Example of Overfitting

• Which model do you believe?

– The complicated model fits
the data better.

– But it is not economical

• A model is convincing when it
fits a lot of data surprisingly
well.

– It is not surprising that a
complicated model can fit a
small amount of data.

3

Overfitting and Faces

• Above you see examples of 𝑊0 that give near-100%
performance on the training set

• The random spots you see are random regularities in
the small training set being exploited – exploiting
them on the test set won’t work, and will possibly
lead to bad performance

300 Hidden Units, 3000 epochs, no regularization, 40 example per actor,
6 actors

4

Overfitting: Summary

• The training data contains information about the regularities in
the mapping from input to output. But it also contains noise

• The target values may be unreliable.

• There is sampling error: there will be accidental regularities
just because of the particular training cases that were chosen.

• When we fit the model, it cannot tell which regularities are real
and which are caused by sampling error.

• So it fits both kinds of regularity.

• If the model is very flexible it can model the sampling error
really well.

• Overfitting: a model making predictions based on
accidental regularities in the training set

5

Reminder: one-hidden-layer
neural networks and faces

6

act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized 7

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

8

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

9

300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128
images

10

Overfitting with a hidden layer

11300 units + heavy-duty optimization

Preventing overfitting

• Use a model that has the right capacity:
• Capacity: ability to produce different outputs depending on

the input
• Need enough to model the true regularities

• Want to not have enough capacity to also model the spurious
regularities (assuming they are weaker)

• Fitting curves in 2D:
• Only fit lines, not higher-degree polynomials

(example on the board)

• Only fit quadratics, not higher degree polynomials

12

Reminder: Nearest Neighbours

• More nearest-neighbours less capacity
• More complicated decision surfaces are not possible

13

Limiting the Capacity of a Neural Network

• Limit the number of hidden units

• Limit the size of the weights
• Works for most classifiers

• Stop the learning before we have time to overfit
• Works for many classifiers

• Combine multiple networks
• Works for most classifiers

• Dropout

14

Learning Curves

• Split the data into a training set, validation set, and
test set.

• Minimize the cost function on the training set,
measure performance on all sets

• Plot the performance on the three sets vs. the
number of optimization iterations performed
• Optimization iteration i:

𝜃𝑖+1 ← 𝜃𝑖 − 𝛼𝛻𝑐𝑜𝑠𝑡(𝜃, 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)
• More details later

15

“Typical” Learning Curves

max
(sometimes) slight
decrease

300-unit hidden layer. 6 people, 80 examples each. Best test
performance: 68%

16

Wikipedia version

test

train

epochsTest error minimized

(Basically a fairytale: the moral of the story is kind of true, but
things rarely look this nice)

17

Learning Curves

• The training performance always increases
• (Assuming the performance is closely enough related to

the cost we’re optimizing – we sometimes also plot the
cost directly)

• The test and validation curve should be the same,
up to sampling error (i.e., variation due to the fact
that the sets are small and sometimes things work
better on one of them by chance)

• The training and validation performance sometimes
initially decreases and the decreases as we
minimize the cost function

18

Weight Decay: Limiting the size of the weights

• Weight-decay involves adding
an extra term to the cost
function that penalizes the
squared weights.

• Keeps weights small unless
they have big error
derivatives.

w

C

𝑐𝑜𝑠𝑡𝑊𝐷 = 𝑐𝑜𝑠𝑡 +
𝜆

2
෍

𝑖,𝑗,𝑘

(𝑊(𝑘,𝑖,𝑗))2

19

Other kinds of weight penalty

• Sometimes it works better to
penalize the absolute values of
the weights. (I.e., we penalized
the L1 norm of the weights rather
than the L2 norm)

• Sometimes leads to smaller test errors

• Makes some weights zero

• Compared to the square penalty,
which would not tend to do that

• This is sometimes helpful with
interpreting the features

0

w/2 w/2 w 0

20

Terminology

• L2 regularization: “ridge regression”

• L1 regularization: “LASSO”
• Least Absolute Shrinkage and Selection Operator

21

Another kind of Weight penalty

• Sometimes it works better to use a weight penalty that
has negligible effect on large weights.
• Some weights need to be large for the neural network to work

correctly!

0

22

Geman-McClure loss

act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized 23

300 hidden units, 6 actors, 40 examples each, L1-penalized 24

Combining networks

• When the amount of training data is limited, we need to
avoid overfitting.

• Averaging the predictions of many different networks is
a good way to do this.

• It works best if the networks are as different as possible.

• If the data is really a mixture of several different “regimes” it
is helpful to identify these regimes and use a separate,
simple model for each regime.

• We want to use the desired outputs to help cluster cases
into regimes. (But we don’t know how to do that in
advance – need to train the network first)

25

Dropout

• During training, hidden units are set to 0 with
probability (1 − 𝑝)

• When computing test outputs, scale all
activations by the factor of 𝑝
• Keeps the scale of the output consistent, and gives

the right output in expectation

26

Why does dropout prevent
overfitting?

• Prevents dependence between units
• Each unit must be “useful” independent of other units

• We cannot learn a network that depends on complex
activation patterns

27

The Risk curve

28

https://arxiv.org/pdf/1812.11118.pdf

Belkin et al.’s “double descent” (2019)

risk = error

