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Overfitting

• Overfitting happens when the model (e.g., a Neural 
Network, or k-NN, or…) models the specific training 
set rather than the underlying data from which the 
training set is taken
• I.e., because the training set is too small, the network 

can do extremely well on the training set by modelling 
its peculiarities
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A Simple Example of Overfitting

• Which model do you believe?

– The complicated model fits 
the data better.

– But it is not economical

• A model is convincing when it 
fits a lot of data surprisingly 
well.

– It is not surprising that a 
complicated model can fit a 
small amount of data.
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Overfitting and Faces

• Above you see examples of 𝑊0 that give near-100% 
performance on the training set

• The random spots you see are random regularities in 
the small training set being exploited – exploiting 
them on the test set won’t work, and will possibly 
lead to bad performance

300 Hidden Units, 3000 epochs, no regularization, 40 example per actor, 
6 actors
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Overfitting: Summary 

• The training data contains information about the regularities in 
the mapping from input to output. But it also contains noise

• The target values may be unreliable.

• There is sampling error: there will be accidental regularities 
just because of the particular training cases that were chosen.

• When we fit the model, it cannot tell which regularities are real 
and which are caused by sampling error. 

• So it fits both kinds of regularity.

• If the model is very flexible it can model the sampling error 
really well. 

• Overfitting: a model making predictions based on 
accidental regularities in the training set

5



Reminder: one-hidden-layer 
neural networks and faces
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act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized 7



300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128 
images
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300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128 
images
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300 hidden units, 6 actors, 40 examples each, L2-penalized, 128x128 
images
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Overfitting with a hidden layer

11300 units + heavy-duty optimization



Preventing overfitting

• Use a model that has the right capacity:
• Capacity: ability to produce different outputs depending on 

the input
• Need enough to model the true regularities

• Want to not have enough capacity to also model the spurious 
regularities (assuming they are weaker)

• Fitting curves in 2D:
• Only fit lines, not higher-degree polynomials

(example on the board)

• Only fit quadratics, not higher degree polynomials
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Reminder: Nearest Neighbours

• More nearest-neighbours        less capacity
• More complicated decision surfaces are not possible
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Limiting the Capacity of a Neural Network

• Limit the number of hidden units

• Limit the size of the weights
• Works for most classifiers

• Stop the learning before we have time to overfit
• Works for many classifiers

• Combine multiple networks
• Works for most classifiers

• Dropout
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Learning Curves

• Split the data into a training set, validation set, and 
test set.

• Minimize the cost function on the training set, 
measure performance on all sets

• Plot the performance on the three sets vs. the 
number of optimization iterations performed
• Optimization iteration i:

𝜃𝑖+1 ← 𝜃𝑖 − 𝛼𝛻𝑐𝑜𝑠𝑡(𝜃, 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)
• More details later
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“Typical” Learning Curves

max
(sometimes) slight 
decrease

300-unit hidden layer. 6 people, 80 examples each. Best test 
performance: 68%
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Wikipedia version

test

train

epochsTest error minimized

(Basically a fairytale: the moral of the story is kind of true, but 
things rarely look this nice)
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Learning Curves

• The training performance always increases
• (Assuming the performance is closely enough related to 

the cost we’re optimizing – we sometimes also plot the 
cost directly)

• The test and validation curve should be the same, 
up to sampling error (i.e., variation due to the fact 
that the sets are small and sometimes things work 
better on one of them by chance)

• The training and validation performance sometimes 
initially decreases and the decreases as we 
minimize the cost function
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Weight Decay: Limiting the size of the weights

• Weight-decay involves adding 
an extra term to the cost 
function that penalizes the 
squared weights.

• Keeps weights small unless 
they have big error 
derivatives.
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Other kinds of weight penalty

• Sometimes it works better to 
penalize the absolute values of 
the weights. (I.e., we penalized 
the L1 norm of the weights rather 
than the L2 norm)

• Sometimes leads to smaller test errors

• Makes some weights zero

• Compared to the square penalty, 
which would not tend to do that

• This is sometimes helpful with 
interpreting the features

0

w/2 w/2 w 0
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Terminology

• L2 regularization: “ridge regression”

• L1 regularization: “LASSO”
• Least Absolute Shrinkage and Selection Operator
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Another kind of Weight penalty

• Sometimes it works better to use a weight penalty that 
has negligible effect on large weights.
• Some weights need to be large for the neural network to work 

correctly!

0
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Geman-McClure loss



act = ['Angie Harmon‘, 'Peri Gilpin‘, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized 23



300 hidden units, 6 actors, 40 examples each, L1-penalized 24



Combining networks

• When the amount of training data is limited, we need to 
avoid overfitting. 

• Averaging the predictions of many different networks is 
a good way to do this.

• It works best if the networks are as different as possible.

• If the data is really a mixture of several different “regimes” it 
is helpful to identify these regimes and use a separate, 
simple model for each regime.

• We want to use the desired outputs to help cluster cases 
into regimes. (But we don’t know how to do that in 
advance – need to train the network first)
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Dropout

• During training, hidden units are set to 0 with 
probability (1 − 𝑝)

• When computing test outputs, scale all 
activations by the factor of 𝑝
• Keeps the scale of the output consistent, and gives 

the right output in expectation
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Why does dropout prevent 
overfitting?

• Prevents dependence between units
• Each unit must be “useful” independent of other units

• We cannot learn a network that depends on complex 
activation patterns
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The Risk curve
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https://arxiv.org/pdf/1812.11118.pdf

Belkin et al.’s “double descent” (2019)

risk = error


