
Artificial Neural Networks: Intro

SML310: Research Projects in Data Science, Fall 2019

Michael Guerzhoy

“Making Connections” by Filomena Booth (2013)

1

Sample task

• Training set: 6 actors, with 100 64 × 64 photos of faces for each

• Test set: photos of faces of the same 6 actors

• Want to classify each face as one of ['Fran Drescher', 'America Ferrera',
'Kristin Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']

Images Vectors

60 60 255 255

60 60 255 255

60 60 255 255

128 128 128 128

60

60

255

255

60

60

255

255

60

60

255

255

128

128

128

128

The Face Recognition Task

• Training set:
• 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

• 𝑥(𝑖) is a k-dimensional vector consisting of the intensities of all
the pixels in in the i-th photo (20 × 20 photo → 𝑥(𝑖) is 400-
dimensional)

• 𝑦(𝑖) is the label (i.e., name)

• Test phase:
• We have an input vector 𝑥, and want to assign a label 𝑦

to it
• Whose photo is it?

Reminder: Face Recognition using 1-Nearest Neighbors (1NN)

• Training set: 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

• Input: 𝑥

• 1-Nearest Neighbor algorithm:

• Find the training photo/vector 𝑥(𝑖) that’s as “close” as possible to 𝑥, and output the
label 𝑦(𝑖)

5
Closest training image to
the input 𝑥

Output: Paul

Input 𝑥

6

The Simplest Possible Neural
Network for Face Recognition

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

𝑧𝑘 = 𝜎

𝑗=1

4096

𝑊 1,𝑗,𝑘 𝑥𝑗 + 𝑏 1,𝑘

= 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘
𝑥

𝜎(𝑥)

ℎ𝜃 = ℎ𝑊,𝑏

Training a neural network

• Adjust the W’s (4096 × 6 coefs) and b’s (6
coefs)
• Try to make it so that if
𝑥 is an image of actor 1, 𝑧 is as close as possible to (1, 0, 0, 0, 0, 0)
𝑥 is an image of actor 2, 𝑧 is as close as possible to (0, 1, 0, 0, 0, 0)

……

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

Training a neural network

• Adjust the W’s (4096 × 6 coefs) and b’s (6
coefs)
• Try to make it so that if
𝑥 is an image of actor 1, 𝑧 is as close as possible to (1, 0, 0, 0, 0, 0)
𝑥 is an image of actor 2, 𝑧 is as close as possible to (0, 1, 0, 0, 0, 0)

……

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

Face recognition

• Compute the z for a new image x

• If 𝑧𝑘 is the largest output, output name k

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

An interpretation
𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor 1,
actor 2, …, actor 6

Actor 3 neuron activated:

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large

input vector

(flattened 64x64

Image)

𝑧3

𝑥1 … …𝑥20 𝑥4096… … … … … … …

𝑊(1,4096,3)

𝑏(1,3)

𝑊(1,20,3)

𝑊(1,1,3) … ……

Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)

Deep Neural Networks:
Introducing Hidden Layers

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

input vector
(flattened
64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚)

K hidden

units

Why a hidden layer?

• Instead of checking whether 𝑥 looks like one of 6
templates, we’ll be checking whether 𝑥 looks like
one of K templates, for a large 𝐾
• If template 𝑘 (i.e., 𝑊(1,∗,𝑘)) looks like actor 6,
𝑊(2,𝑘,6) will be large

Recap: Face Recognition with ML

• 1-Nearest-Neighbor: match 𝑥 to all the images in the
training set

• 0-hidden-layer neural network*: match 𝑥 to several
templates, with one template per actor
• The templates work better than any individual photo

• 1-hidden-layer neural network: match 𝑥 to 𝐾 templates
• The templates work better than any individual photo
• More templates means better accuracy on the

training set

*A.K.A. multinomial logistic regression to its friends

Visualizing a One-Hidden-Layer
NN

Demo

http://playground.tensorflow.org/

16

http://playground.tensorflow.org/

Deep Neural Networks as a Model
of Computation
• Most people’s first instinct a face classifier is to write a complicated computer

program

• A deep neural network is a computer program:

h1 = f1(x)

h2 = f2(h1)

h3 = f3(h2)

…

h9 = f9(h8)

• Can think of every layer of a neural network as one step of a parallel
computation

• Features/templates are the functions that are applied to the previous layers

• Learning features Learning what function to apply at step t of the algorithm

17

What are the hidden units doing?

• Find the images in the dataset that activate the
units the most

• Let’s see some visualizations of neurons of a large
deep network trained to recognize objects in
images
• Then network classifies images as one of 1000 objects

(sample objects: toy poodle, flute, forklift, goldfish…)

• The network has 8 layers

• Note: more tricks were used in designing the networks
than we have time to mention! In particular, a
convolutional architecture is crucial

Units in Layer 3

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Units in Layer 4

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Units in Layer 5

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Which pixels are responsible for
the output?

• For each pixel in a particular image ask:
• If I changed this pixel j by a little bit, how would that

influence the output i

• Equivalent to asking: what’s the gradient
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗

• We can visualize why a particular output was chosen by

the network by computing
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗
for every j, and

displaying that as an image

Gradient and Guided Backpropagation
Image I

∂Cat-Neuron
∂I

Guided Backpropagation visualization

Guided backpropagation
 Instead of computing

𝜕𝑝𝑚

𝜕𝑥
,

only consider paths from 𝑥 to
𝑝𝑚 where the weights are
positive and all the units are
positive (and greater than 0).
Compute this modified

version of
𝜕𝑝𝑚

𝜕𝑥

 Only consider evidence for
neurons being active, discard
evidence for neurons having
to be not active

Guided Backpropagation Intuition

… …

Cat eye
at (200,

300)

Dog ear
at (180, 320)

CAT DOG

… … …

Pixel provides both
positive (via a cat eye
detection) and
negative (via absence
of cat eye detection)
evidence for a cat in
the image

Application: Photo Orientation

• Detect the correct orientation of a consumer photograph

• Input photo is rotated by 0°, 90°, 180° or 270°

• Help speed up the digitization of analog photos

• Need correctly oriented photos as inputs for other systems

A Neural Network for Photo
Orientation

224x224x64

112x112x128

56x56x256

28x28x512
7x7x51214x14x512

4096
224x224x3

4096

Convolution - ReLU Max pooling Fully Connected SoftmaxLayer legend:

0°

90°

180°

270°

4

Correctly Oriented Photos

• Display pixels that provide direct positive evidence
for 0°

Incorrectly-oriented photos

