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Sample task

• Training set: 6 actors, with 100 64 × 64 photos of faces for each

• Test set: photos of faces of the same 6 actors

• Want to classify each face as one of ['Fran Drescher', 'America Ferrera', 
'Kristin Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']
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The Face Recognition Task

• Training set:
• 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

• 𝑥(𝑖) is a k-dimensional vector consisting of the intensities of all 
the pixels in in the i-th photo (20 × 20 photo → 𝑥(𝑖) is 400-
dimensional)

• 𝑦(𝑖) is the label (i.e., name)

• Test phase:
• We have an input vector 𝑥, and want to assign a label 𝑦

to it
• Whose photo is it?



Reminder: Face Recognition using 1-Nearest Neighbors (1NN)

• Training set: 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

• Input: 𝑥

• 1-Nearest Neighbor algorithm:

• Find the training photo/vector 𝑥(𝑖) that’s as “close” as possible to 𝑥, and output the 
label 𝑦(𝑖)
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Closest training image to 
the input 𝑥

Output: Paul

Input 𝑥
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The Simplest Possible Neural 
Network for Face Recognition
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Training a neural network

• Adjust the W’s (4096 × 6 coefs) and b’s (6 
coefs) 
• Try to make it so that if 
𝑥 is an image of actor 1, 𝑧 is as close as possible to (1, 0, 0, 0, 0, 0)
𝑥 is an image of actor 2, 𝑧 is as close as possible to (0, 1, 0, 0, 0, 0)
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Face recognition

• Compute the z for a new image x

• If 𝑧𝑘 is the largest output, output name k

outputs (one per actor)𝑧1

input vector 

(flattened 64x64 

Image)
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An interpretation
𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor 1, 
actor 2, …, actor 6

Actor 3 neuron activated: 

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large
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𝑥1 … …𝑥20 𝑥4096… … … … … … …
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𝑊(1,20,3)
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Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)



Deep Neural Networks: 
Introducing Hidden Layers

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)
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input vector 
(flattened 
64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚 )

K hidden 

units



Why a hidden layer?

• Instead of checking whether 𝑥 looks like one of 6 
templates, we’ll be checking whether 𝑥 looks like 
one of K templates, for a large 𝐾
• If template 𝑘 (i.e., 𝑊(1,∗,𝑘)) looks like actor 6, 
𝑊(2,𝑘,6) will be large



Recap: Face Recognition with ML

• 1-Nearest-Neighbor:  match 𝑥 to all the images in the 
training set

• 0-hidden-layer neural network*: match 𝑥 to several 
templates, with one template per actor
• The templates work better than any individual photo

• 1-hidden-layer neural network: match 𝑥 to 𝐾 templates
• The templates work better than any individual photo
• More templates means better accuracy on the 

training set

*A.K.A. multinomial logistic regression to its friends



Visualizing a One-Hidden-Layer 
NN



Demo

http://playground.tensorflow.org/
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http://playground.tensorflow.org/


Deep Neural Networks as a Model 
of Computation
• Most people’s first instinct a face classifier is to write a complicated computer 

program

• A deep neural network is a computer program:

h1 = f1(x)

h2 = f2(h1)

h3 = f3(h2)

…

h9 = f9(h8)

• Can think of every layer of a neural network as one step of a parallel 
computation

• Features/templates are the functions that are applied to the previous layers

• Learning features  Learning what function to apply at step t of the algorithm
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What are the hidden units doing?

• Find the images in the dataset that activate the 
units the most

• Let’s see some visualizations of neurons of a large 
deep network trained to recognize objects in 
images
• Then network classifies images as one of 1000 objects 

(sample objects: toy poodle, flute, forklift, goldfish…)

• The network has 8 layers

• Note: more tricks were used in designing the networks 
than we have time to mention! In particular, a 
convolutional architecture is crucial



Units in Layer 3

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 4

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 5

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Which pixels are responsible for 
the output?

• For each pixel in a particular image ask:
• If I changed this pixel j by a little bit, how would that 

influence the  output i

• Equivalent to asking: what’s the gradient 
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗

• We can visualize why a particular output was chosen by 

the network by computing 
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗
for every j, and 

displaying that as an image



Gradient and Guided Backpropagation
Image I

∂Cat-Neuron
∂I

Guided Backpropagation visualization



Guided backpropagation
 Instead of computing  

𝜕𝑝𝑚

𝜕𝑥
, 

only consider paths from 𝑥 to 
𝑝𝑚 where the weights are 
positive and all the units are 
positive (and greater than 0). 
Compute this modified 

version of 
𝜕𝑝𝑚

𝜕𝑥

 Only consider evidence for 
neurons being active, discard 
evidence for neurons having 
to be not active



Guided Backpropagation Intuition

… …

Cat eye
at (200, 

300)

Dog ear
at (180, 320)

CAT DOG

… … …

Pixel provides both 
positive (via a cat eye 
detection) and 
negative (via absence 
of cat eye detection) 
evidence for a cat in 
the image



Application: Photo Orientation

• Detect the correct orientation of a consumer photograph

• Input photo is rotated by 0°, 90°, 180° or 270°

• Help speed up the digitization of analog photos

• Need correctly oriented photos as inputs for other systems



A Neural Network for Photo 
Orientation

224x224x64

112x112x128

56x56x256

28x28x512
7x7x51214x14x512

4096
224x224x3

4096

Convolution - ReLU Max pooling Fully Connected SoftmaxLayer legend:

0°

90°

180°

270°
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Correctly Oriented Photos

• Display pixels that provide direct positive evidence 
for 0°







Incorrectly-oriented photos








