Artificial Neural Networks: Intro
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Sample task

* Training set: 6 actors, with 100 64 X 64 photos of faces for each
* Test set: photos of faces of the same 6 actors

* Want to classify each face as one of ['Fran Drescher', 'America Ferrera’,
'Kristin Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']
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The Face Recognition Task

* Training set:
c {(x®,y ), (x@,y@), _, (x™), 5}

« x s a k-dimensional vector consisting of the intensities of all
the pixels in in the i-th photo (20 X 20 photo — x® is 400-
dimensional)

« y® s the label (i.e., name)

* Test phase:

* We have an input vector x, and want to assign a label y
to it
 Whose photo is it?



Reminder: Face Recognition using 1-Nearest Neighbors (INN)

» Training set: {(xV, y®), (x2),y@), ., (x), y ()}

* Input: x
* 1-Nearest Neighbor algorithm:

* Find the training photo/vector x® that’s as “close” as possible to x, and output the

label y®

Input x
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Closest training image to
the input x
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Output: Paul



The Simplest Possible Neura
Network for Face Recognitio
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Training a neural network

e Adjust the W’s (4096 X 6 coefs) and b’s (6
coefs)

* Try to make it so that if

X is an image of actor 1, z is as close as possible to (1, 0, 0, 0, 0, 0)
X is an image of actor 2, z is as close as possible to (0, 1, 0, 0, 0, 0)

<« OUtpUts (ONe per actor)
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Face recognition

* Compute the z for a new image x

* If z;, is the largest output, output name k

<« OUtpUts (ONe per actor)
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An interpretation

zy is large if W51 L x s |arge
Z5 is large if w2 . xis large

z4 is large if W(*3) . x is large

w@sD pw@x2) |y A%6) gre templates for the faces of actor 1,
actor 2, ..., actor 6

Actor 3 neuron activated:
b0 (W3 . x + p13) is large

input vector
(flattened 64x64
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Visualizing the parameters W
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Deep Neural Networks:
ntroducing Hidden Layers

<= OUtputs (one per actor)

input vector
........................ (flattened
64x64 image)

hk = O'(W(l;*,k) -x + b(l,k))

Z = c(W@*™) . p 4 p2m)



Why a hidden layer?

* Instead of checking whether x looks like one of 6
templates, we’ll be checking whether x looks like
one of K templates, for a large K

<= | outputs (one per actor)

) <= | K hidden units

he = o(WER) - x4 p(LR))
Z,, = O.(W(Z,*,m) “h+ b(z,m))

input vector
(flattened 64x64 image)




Recap: Face Recognition with ML

e 1-Nearest-Neighbor: match x to all the images in the
training set

* 0-hidden-layer neural network*: match x to several
templates, with one template per actor
* The templates work better than any individual photo

* 1-hidden-layer neural network: match x to K templates
* The templates work better than any individual photo

* More templates means better accuracy on the
training set

*A.K.A. multinomial logistic regression to its friends



Visualizing a One-Hidden-Layer
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Demo

http://playground.tensorflow.org/
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http://playground.tensorflow.org/

Deep Neural Networks as a Model
of Computation

Most people’s first instinct a face classifier is to write a complicated computer
program

A deep neural network is a computer program:

hli = f1(x)
h2 = f2(h1)
h3 = f3(h2)
.f.1-9 = f9(h8)

Can think of every layer of a neural network as one step of a parallel
computation

Features/templates are the functions that are applied to the previous layers
Learning features <> Learning what function to apply at step t of the algorithm



What are the hidden units doing?

* Find the images in the dataset that activate the
units the most

e [let’s see some visualizations of neurons of a large
deep network trained to recognize objects in
Images

* Then network classifies images as one of 1000 objects
(sample objects: toy poodle, flute, forklift, goldfish...)
* The network has 8 layers

* Note: more tricks were used in designing the networks
than we have time to mention! In particular, a
convolutional architecture is crucial



Units in Layer 3
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Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 4

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 5
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Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Which pixels are responsible for
the output?

* For each pixel in a particular image ask:

* If | changed this pixel j by a little bit, how would that

influence the output i
doutput;

* Equivalent to asking: what’s the gradient dinput;

* We can visualize why a particular output was chosen by

. doutput; :
the network by computing dinput, for every j, and

displaying that as an image



Gradient and Guided Backpropagation
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Guided backpropagation
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only consider paths from x to
pm Where the weights are
positive and all the units are
positive (and greater than 0).

Compute this modified

Instead of computing

) 0
version of%

Only consider evidence for
neurons being active, discard
evidence for neurons having
to be not active
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Guided Backpropagation Intuition

Cat eye Dog ear
at (200, at (180, 320)
300)

Pixel provides both
positive (via a cat eye
detection) and
negative (via absence
of cat eye detection)
evidence for a cat in
the image




Application: Photo Orientation

Detect the correct orientation of a consumer photograph
Input photo is rotated by 0°, 90°, 180° or 270°
Help speed up the digitization of analog photos

Need correctly oriented photos as inputs for other systems

0° 180° 270°



A Neural Network for Photo
Orientation
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Correctly Oriented Photos

* Display pixels that provide direct positive evidence










Incorrectly-oriented photos
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