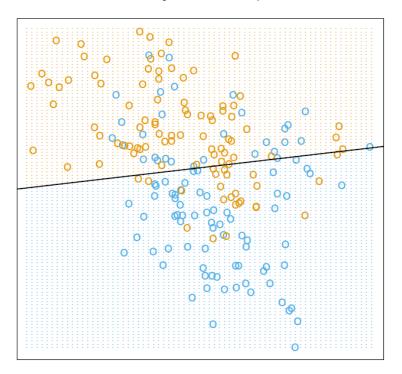
Linear Classifiers and Logistic Regression

Linear Regression of 0/1 Response



Some slides from:

SML310: Research Projects in Data Science, Fall 2019

Andrew Ng

Michael Guerzhoy

Classification vs. Regression

- Classification: for the example $(x_1, x_2, ..., x_n)$ predict the label y (e.g., face recognition)
- Regression: for the example $(x_1, x_2, ..., x_n)$ predict a real number y (e.g., house price prediction)

Classification with two classes

 If there are only two classes, transform, e.g., orange => 1 blue => 0
 to turn the classification problem

to turn the classification problem into a regression problem

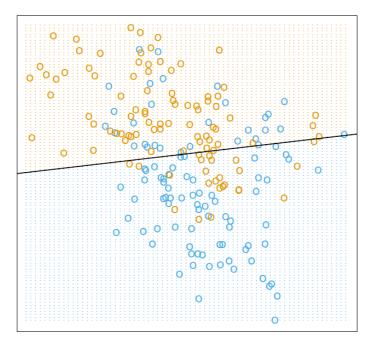
• Find the best

$$h_{\theta}(x) = \theta^T x$$

• Predict:

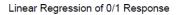
 $\begin{cases} 1, h_{\theta}(x) > 0.5 \\ 0, otherwise \end{cases}$

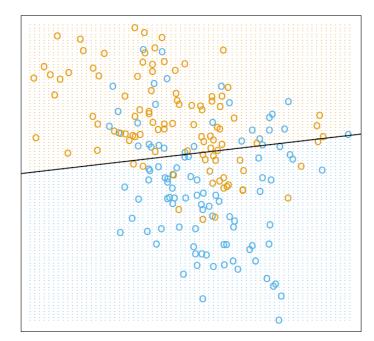
Linear Regression of 0/1 Response



 $heta_1 x_1 + heta_2 x_2$ (can add in $heta_0$)

What is the equation of the decision boundary?





What is the equation of the decision boundary?

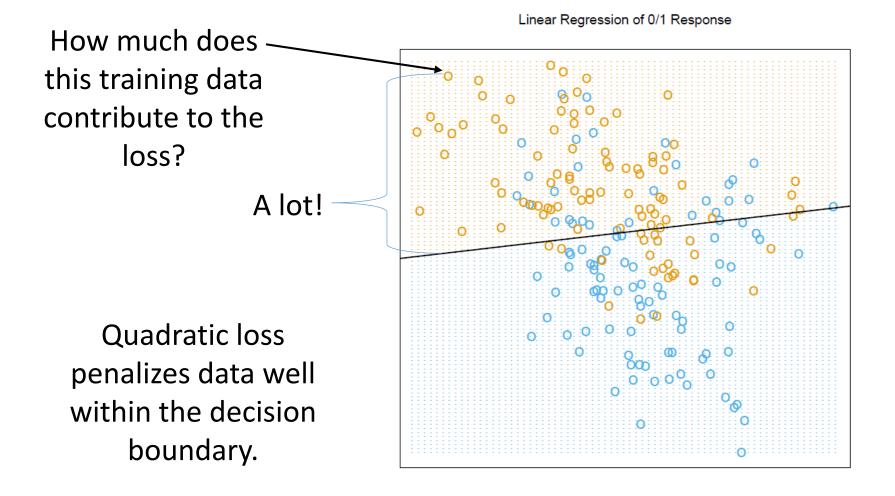
But what about the loss function?

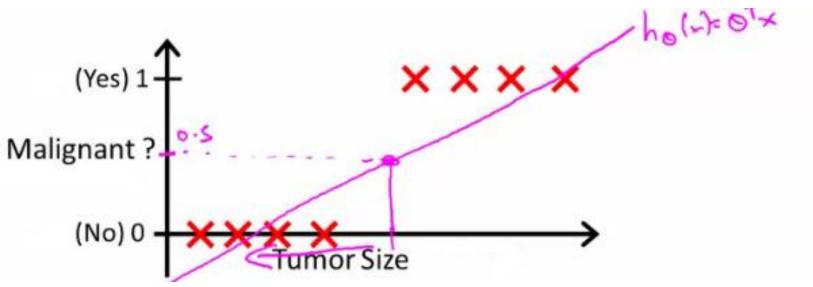
(Loss function = cost function)

Attempt #1:

- Quadratic loss, as in Linear Regression. $\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$
- What is the problem with this loss function?

Attempt #1:





Even with perfect classification, Loss is still nonzero (and can be high!)

Attempt #2:

- Classification error or 0-1 loss. $\sum_{i=1}^{m} I[y^{(i)}, t^{(i)}] \qquad t^{(i)} = \begin{cases} 1, h_{\theta}(x^{(i)}) > 0.5\\ 0, otherwise \end{cases}$
- Where I is the indicator function:

$$I[y,t] = \begin{cases} 1, y = t \\ 0, otherwise \end{cases}$$

• What is the problem with this loss function?

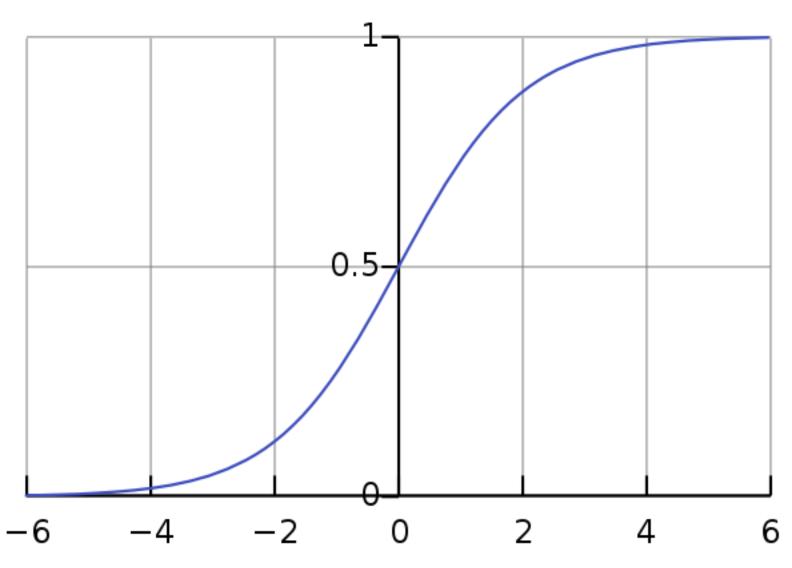
Not continuous. Hard to optimize. Cannot use gradient descent (Why? On the board)

Attempt #3:

- Problem with linear regression (quadratic loss):
 Predictions are allowed to take arbitrary real values!
- Problem with linear regression (0-1 loss): Hard to optimize!
- Apply a nonlinearity or activation function: sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function



Revised Setup

 If there are only two classes, transform, e.g., orange => 1

```
blue => 0
```

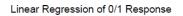
to turn the classification problem into a regression problem

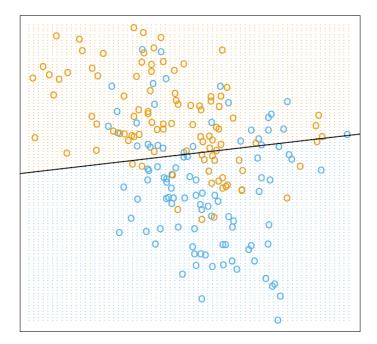
• Model:

$$h_{\theta}(x) = \sigma(\theta^T x)$$

• Where

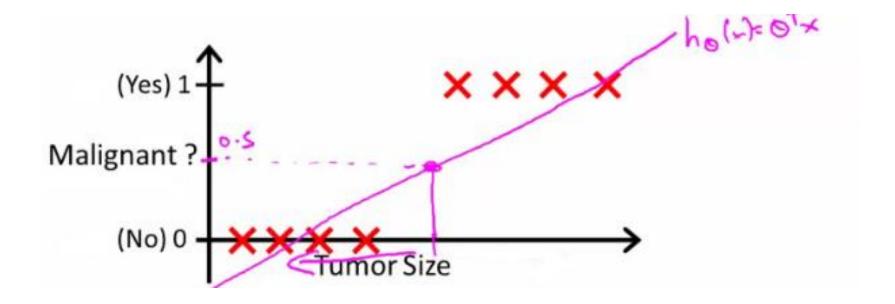
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$





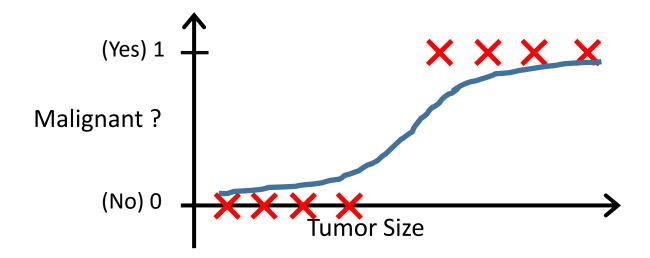
What is the equation of the decision boundary?

Reminder: linear prediction in 1D



Even with perfect classification, Loss is still nonzero (and can be high!)

Example in 1D: applying the sigmoid



What about the loss?

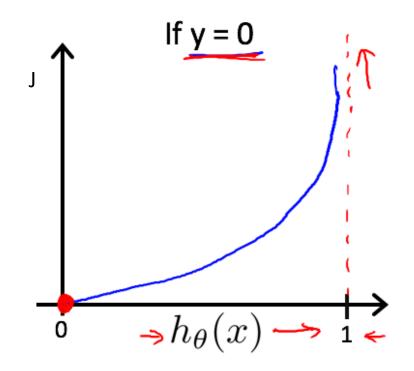
• Square Loss?

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right)^2$$

- On the board:
 - Very large $(\theta^T x)$ is the same as moderately large $(\theta^T x)$

What loss should we use?

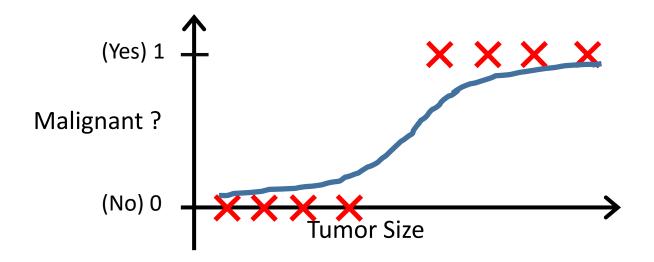
• We will use **Cross Entropy Loss** $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(-\log \sigma \left(\theta^T \boldsymbol{x}^{(i)} \right) \right)^{\boldsymbol{y}^{(i)}} \left(-\log(1 - \sigma \left(\theta^T \boldsymbol{x}^{(i)} \right)) \right)^{1 - \boldsymbol{y}^{(i)}}$



Why Cross Entropy?

- Where does this come from?
- As in Linear Regression, we will use a probabilistic interpretation

Predictions look like probabilities



Logistic Regression

Logistic Regression

• Assume the data is generated according to

$$y^{(i)} = 1$$
 with probability $\frac{1}{1 + \exp(-\theta^T x^{(i)})}$

$$y^{(i)} = 0$$
 with probability $\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})}$

• This can be written concisely as:

$$\sum_{s} \frac{P(y^{(i)}=1|x^{(i)},\theta)}{P(y^{(i)}=0|x^{(i)},\theta)} = \exp(\theta^{T}x^{(i)})$$

odds

(exercise)

Logistic Regression: Likelihood

•
$$P(y^{(i)} = 1 | x^{(i)}, \theta) = \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})}\right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})}\right)^{1 - y^{(i)}}$$

(just a trick that works because $y^{(i)}$ is either 1 or 0)

•
$$P(y|x,\theta) = \prod_{i=1}^{m} \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})}\right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})}\right)^{1-y^{(i)}}$$

• $\log P(y|x,\theta) = \sum_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1+\exp(-\theta^T x^{(i)})}\right) + (1-y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})}\right)$

Logistic Regression: Learning and Testing

• Learning: find the θ that maximizes the log-likelihood:

$$\sum_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})} \right) + (1 - y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \right)$$

• For x in the test set, compute

$$P(y = 1 | x, \theta) = \frac{1}{1 + \exp(-\theta^T x)}$$

• Predict that $y = 1$ if $P(y = 1 | x, \theta) > .5$

Logistic Regression: Decision Surface

• Predict
$$y = 1$$
 if $\frac{1}{1 + \exp(-\theta^T x)} > 0.5$
 $\Leftrightarrow \qquad -\theta^T x < 0$
 $\Leftrightarrow \qquad \theta^T x > 0$

• The decision surface is $\theta^T x = 0$, a hyperplane

Logistic Regression

 Outputs the probability of the datapoint's belonging to a certain class:

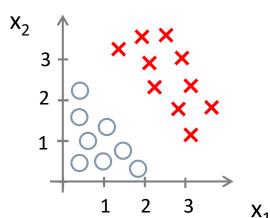
 $y^{(i)} = 1$ with probability $\frac{1}{1 + \exp(-\theta^T x^{(i)})}$

 $y^{(i)} = 0$ with probability $\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})}$

(compare with linear regression)

- Linear decision surface
- Probably the first thing you would try in a realworld setting for a classification task

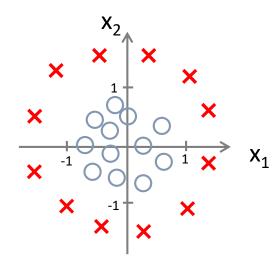
Decision boundary shapes



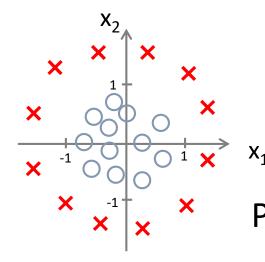
 $\begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{x} \\ \mathbf{x} \mathbf{x} \\ \mathbf{x} \mathbf{x} \\ \mathbf{x} \mathbf{x} \end{array} \qquad h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

Predict y = 1 if $-3 + x_1 + x_2 \ge 0$

Decision boundary shapes



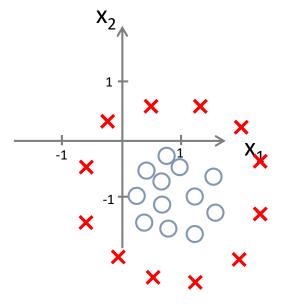
Decision boundary shapes



$$\begin{aligned} h_{\theta}(x) &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 \\ &+ \theta_3 x_1^2 + \theta_4 x_2^2) \\ \mathbf{x}_1 \end{aligned}$$

 Predict $y = 1$ if $-1 + x_1^2 + x_2^2 \geq 0$

What is the equation for a good decision boundary?



Multiclass Classification

Email foldering/tagging : Work, Friends, Family, Hobby y = 1 y = 2 y = 3 y = 4

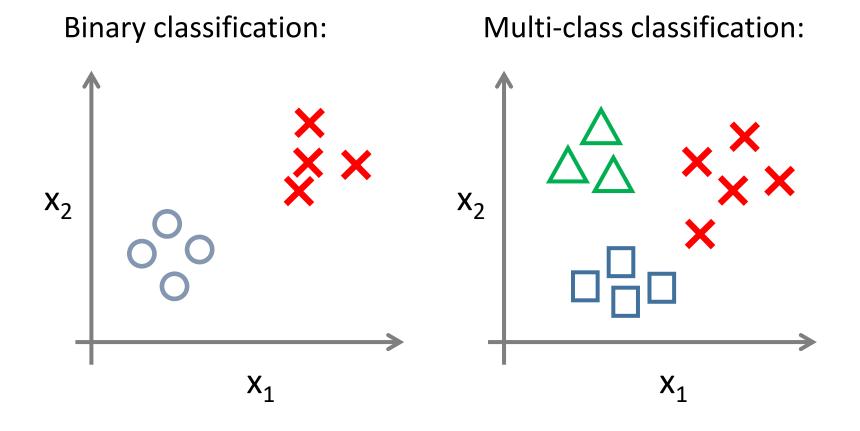
Features: x_1 : 1 if "extension" is in the email, 0 otherwise x_2 : 1 if "dog" is in the email, 0 otherwise

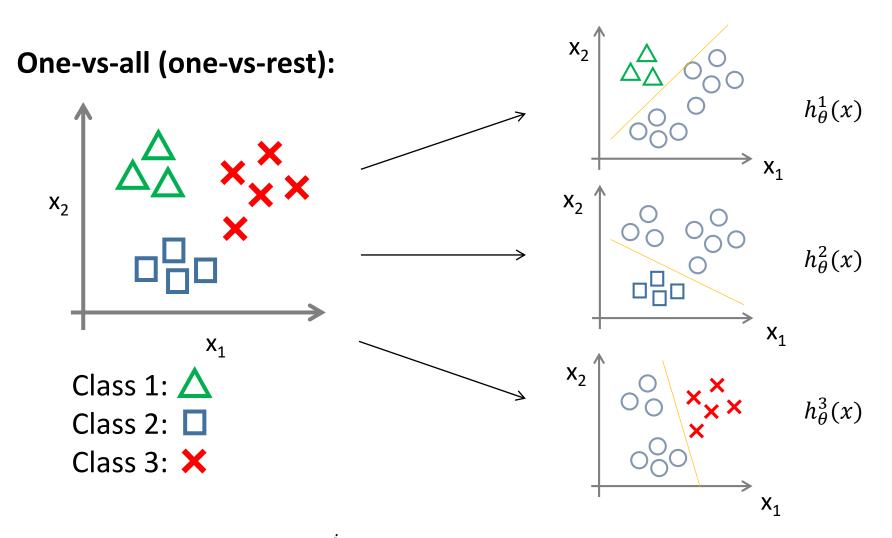
Medical diagrams: Not ill, Cold, Flu

...

 $y = 1 \quad y = 2 \quad y = 3$

Features: temperature, cough presence, ...





Output the i such that $h_{\theta}^{i}(x)$ is the largest (Idea: a large $h_{\theta}^{i}(x)$ means that the classifier is "sure")