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Case Study: Radon Levels in 
Minnesota
• Radon is a radioactive gas that is known to cause 

lung cancer, and is responsible for several 
thousands of lung cancer deaths per year in the US

• Radon levels vary in different homes, and also vary 
in different counties

Minnesota Minnesota counties



Goal

• Based on a limited set of measurements, want to 
know the log(radon level) in the different counties



Complete Pooling

• Combine all the information from all the counties 
into a single “pool” of data

• Problem with complete pooling: the levels might 
differ for the different counties



No-Pooling Estimate

• Compute the average radon level for 
measurements in each county

• Compare pairs of counties using t-tests

• Equivalent to

lm(log_radon~county, data=mn)

and looking at the coefficients for each county



No-Pooling Estimate: Problem

• We have just two data points for Lac Qui Parle, so 
we shouldn’t necessarily trust the data from there 
as much

• If we want to get at an estimate of the average log-
radon level in Lac Qui Parle County, we probably 
want some kind of weighted average between what 
we observe in Lac Qui Parle County and the overall 
average



Multilevel Model

• Consider how the data is generated

• 𝑦𝑖~𝑁 𝛼𝑗 𝑖 , 𝜎𝑦
2

• 𝑦𝑖 is the i-th measurement

• j[i] is the county in which the i-th measurement 
was taken

• 𝛼𝑗 𝑖 is the true log-radon level in county j[i]

• NEW:
𝛼𝑗 𝑖 ~𝑁(𝜇𝛼 , 𝜎𝛼

2)

• Estimate the best 𝜇𝛼 , 𝜎𝛼
2 from the data



Multilevel Model: Summary

𝛼𝑗 𝑖 ~𝑁(𝜇𝛼 , 𝜎𝛼
2)

𝑦𝑖~𝑁 𝛼𝑗 𝑖 , 𝜎𝑦
2



Partial Pooling

𝑦𝑖~𝑁 𝛼𝑗 𝑖 , 𝜎𝑦
2

𝛼𝑗 𝑖 ~𝑁(𝜇𝛼 , 𝜎𝛼
2)

• Let 𝑓 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp(−

𝑥−𝜇 2

2𝜎2
)

• (Approximate) Likelihood used by lme in R:
𝑃 𝑦1, 𝑦2, … , 𝑦𝑛 𝜇𝛼 , 𝜎𝑦

2, 𝜎𝛼
2

= (Π𝑗𝑓 𝛼𝑗 𝜇𝛼 , 𝜎𝛼
2 ) Π𝑖𝑓 𝑦𝑖 𝛼𝑗 𝑖 , 𝜎𝑦

2

• lme finds the 𝛼𝑗, 𝜎𝑦
2, 𝜇𝛼 , 𝜎𝛼

2 which maximize the 
likelihood

• Can now look at the different 𝛼𝑗



• (Look at R output)
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Complete/Partial/No-Pooling

𝛼𝑗 𝑖 ~𝑁(𝜇𝛼 , 𝜎𝛼
2)

𝑦𝑖~𝑁 𝛼𝑗 𝑖 , 𝜎𝑦
2

• No-Pooling: 𝜎𝛼
2 = ∞. That is, we assume that there is 

no connection at all between the log-radon levels in the 
different counties
• lm(log.radon~county, data=mn)

• Complete pooling: 𝜎𝛼
2 = 0. Assume the true mean log-

radon levels in all counties are the same
• lm(log.radon~1, data=mn)

• Partial pooling: assume the mean log-radon levels are 
different in different counties, but their SD is 𝜎𝛼 (so 
they don’t differ by that much



R output

Ƹ𝜇𝛼

ො𝜎𝛼
2 ො𝜎𝛼

ො𝜎𝑦
2

Random effects: coefficients 
that are modelled (i.e., 
generated by a distribution)
Fixed effects: coefficients that 
are note modelled

Note: the terminology is 
inconsistent in different places



R output

The 𝛼𝑗
′𝑠 for the 

different counties 
that are most likely



Complete/Partial/No-Pooling

• No-Pooling
• Doesn’t share information between data points
• Estimates for different counties will be completely different 

from each other

• Complete pooling
• Fully shares information between data points
• Estimates for the different counties are all the same

• Partial pooling
• Tries to share information between data points in an optimal 

way
• Estimates for different counties are generally closer together 

than for the no-pooling estimate



Partial pooling with Predictors

• Let’s use the floor predictor (x) as well
• The floor on which the measurement was taken

• Simplest variant:
𝑦𝑖~𝑁 𝛼𝑗 𝑖 + 𝛽𝑥𝑖 , 𝜎𝑦

2

𝛼𝑗 𝑖 ~𝑁(𝜇𝛼 , 𝜎𝛼
2)

• Advantage: better estimates for the levels for the 
various counties would lead to better estimates for the 
𝛽

• Interpretation of 𝛽: keeping everything else constant, 
the increase in radon levels going up one floor

• Better estimate of 𝛽 is obtained by partially pooling 
information when estimating 𝛼𝑗 𝑖



Random Slopes

𝑦𝑖~𝑁 𝛼𝑗 𝑖 + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑦
2

𝛼𝑗
𝛽𝑗

~𝑁
𝜇𝛼
𝜇𝛽

,
𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽

𝜌𝜎𝛼𝜎𝛽 𝜎𝛽
2

• Interpretation: in each county, the effect of moving one floor up on the 
radon levels is different
• Perhaps in one county, the ceilings are 2.5m high, and in another county, the 

ceilings are 2.2m high
• What is the effect of that on the 𝛽s?

• Rewrite:
𝑦𝑖~𝑁 (𝜇𝛼 + 𝛼𝑗 𝑖 ) + (𝜇𝛽 + 𝛽𝑗 𝑖 )𝑥𝑖 , 𝜎𝑦

2

𝛼𝑗
𝛽𝑗

~𝑁
0
0

,
𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽

𝜌𝜎𝛼𝜎𝛽 𝜎𝛽
2



R Output

Ƹ𝜇𝛼 Ƹ𝜇𝛽

ො𝜎𝛼

ො𝜎𝛽

ො𝜎𝑦

ො𝜌



Prediction for a new observation 
in an existing group

𝑦𝑖~𝑁 𝛼𝑗 𝑖 + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑦
2

• Know 𝛼, 𝛽, and x, want to predict new 𝑦

• Simulate multiple 𝑦’s from the distribution

• (in R)



Prediction for a new observation 
in a new group
• For each simulation,

• First, generate 

𝛼𝑗
𝛽𝑗

~𝑁
𝜇𝛼
𝜇𝛽

,
𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽

𝜌𝜎𝛼𝜎𝛽 𝜎𝛽
2

• Next, generate the new data
𝑦𝑖~𝑁 𝛼𝑗 𝑖 + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑦

2



Voting Patterns Across States in 
2004 and Bayesian Statistics
• Red (Republican)/Blue (Democratic) state 

terminology only stabilized in 2000
• Was reversed before that

• Many claims about cultural and economic 
differences between “blue states” and “red states”
• Richer states voted Democratic, but rich voters voted 

Republican
• In 2016: 

https://www.washingtonpost.com/news/politics/wp/20
17/12/29/places-that-backed-trump-skewed-poor-
voters-who-backed-trump-skewed-
wealthier/?noredirect=on&utm_term=.23b4af301f4f

20

https://www.washingtonpost.com/news/politics/wp/2017/12/29/places-that-backed-trump-skewed-poor-voters-who-backed-trump-skewed-wealthier/?noredirect=on&utm_term=.23b4af301f4f


Baysian Inference and Multilevel 
Models
• Same as before (e.g.)

𝛼𝑗
𝛽𝑗

~𝑁
𝜇𝛼
𝜇𝛽

,
𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽

𝜌𝜎𝛼𝜎𝛽 𝜎𝛽
2

𝑦𝑖~𝑁 𝛼𝑗 𝑖 + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑦
2

• Prior distributions on 𝜇𝛼 , 𝜇𝛽 , 𝜎𝛼 …

• Obtain posterior distributions for 𝜇𝛼 , 𝜇𝛽 , 𝜎𝛼 , …
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Voting patterns in different states

• Person 𝑖 in the sample

• 𝑥𝑖: income, on a -2…2 scale

• 𝑠[𝑖]: the state where person 𝑖 lives

• 𝑦𝑖 = 1 if 𝑖 voted Republican

• Baseline model: 𝑃 𝑦𝑖 = 1 = 𝑙𝑜𝑔𝑖𝑡−1(𝑎𝑠 𝑖 + 𝑏𝑥𝑖)
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Model Checking

• Fit the baseline model 
𝑃 𝑦𝑖 = 1 = 𝑙𝑜𝑔𝑖𝑡−1(𝑎𝑠 𝑖 + 𝑏𝑥𝑖)

• Assess model fit by simulating new data from the 
model, and comparing the generated data to the 
actual data
• If the model is a poor fit, the generated data will look 

different from the actual data

• In this case, the constant 𝑏 was a problem
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Better model

• 𝑃 𝑦𝑖 = 1 = 𝑙𝑜𝑔𝑖𝑡−1(𝑎𝑠 𝑖 + 𝑏𝑠[𝑖]𝑥𝑖)

• Income influences voting patterns differently in different 
states

• Observation: in poorer states, the income influences voting 
patterns more

• Gelman’s interpretation: the cultural contrasts that correlate with 
different voting patterns in different states are mostly differences 
between rich people’s cultural consumption patterns

• See Andrew Gelman, Red State, Blue State, Rich State, Poor State 
Why Americans Vote the Way They Do (PU Press, 2009)
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(From Ghitza and Gelman,  Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small 

Electoral Subgroups (2012))



The “Usual” Story About Bayesian 
Inference
● Start with a prior distribution and a model, get 

some data, get a posterior distribution for the 
model parameters

● Everything you need to know is contained in the 
posterior distribution
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A View of Bayesian Modelling

• Fit increasingly complex models to the data until 
the model fit the data

• Use priors for coefficients that help the posterior 
prediction be smooth if there is too little data
• E.g., for the Radon levels example, make the prior for 𝜎𝛼

small enough

• Do model checking using predictive simulation: 
fake data generated by the model should look like 
real data
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