## Review: Conditional Probability



SML310: Research Projects in Data Science, Fall 2019

## Random variables and events

- Random Variable (R.V.): a quantity we observe
- Heads/Tails if we toss a coin
- Amount of precipitation during a day
- ...
- Event: a set* of observations of values of R.V.s
- The coin came up Heads more than 3 times and the amount of precipitation was between 2 mm and 3 mm
- The student got exactly one A+ during the semester
- We (sometimes) can model the probability of events
- P(Heads)
- P(precip < 2mm and Tails)


## Confusing notation

- We sometimes write $P(E)$ to mean "the probability of event $E$ happening" and sometimes $P(X=x)$ to mean "the probability of the event 'the value of the R.V. $X$ is $x^{\prime}$ happening"
- Sometimes, we write $P(X)$ to mean $p(x)=P(X=x)$, the function that takes in $X$ as a parameter and gives us the probability
- Notation we'll try to stick to: X is a random variable (a quantity to be measured). $x$ is a measured value/realization


## Probability and events: practice

- Two R.V.s:
- X1: the outcome of coin toss \#1
- X2: the outcome of coin toss \#2
- In terms of X1 and X2, define the event "no coin came up Heads"
- What is the probability of the event?
- Assume that the coin is fair and the tosses are independent


## Conditional probability

- $P(A \mid B)$ : the probability that event $A$ happened, if we know that event $B$ happened
- We choose a Princeton student at random
- R.V.s:
- H: height of the student
- S: the student's favourite sport
- $P\left(H>6^{\prime} \mid S=\right.$ basketball $)$
- $P\left(H>6^{\prime} \mid S=\right.$ tennis $)$
events


## Conditional probability

- Two R.V.s:
- X1: the outcome of coin toss \#1
- X2: the outcome of coin toss \#2
- $P(X 1+X 2=2)=$ ?
- $P(X 1+X 2=2 \mid X 1=1)=?$
- https://en.wikipedia.org/wiki/Boy or Girl paradox


## Independence

- The R.V.'s X1 and X2 are independent if for all values x 1 and x 2

$$
P(X 1=x 1 \mid X 2=x 2)=P(X 1=x 1)
$$

- The observed value of $X 2$ does not influence our probability estimates for X1
- X2 doesn't provide us with information about the value of X1


## Bayes' Rule and Law of Total Probability

- $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(A, B)}{P(B)}$
- $P(B=b)=\sum_{i=1 \ldots K} P\left(B=b \mid A=a_{i}\right) P\left(A=a_{i}\right)$, if the possible values of A are $a_{1}, \ldots, a_{K}$

