Confidence Intervals

SML201: Introduction to Data Science, Spring 2020
Michael Guerzhoy

The q family of functions

```
> qbinom(p = .025, size = 100, prob = 0.5)
    [1] 40
```

What is the largest number of heads (out of 100 tosses, with 50% probability of heads) such that pbinom $(q=n H$, size $=100$, prob $=0.5)>0.025$?
> pbinom($q=40$, size $=100$, prob $=0.5$)
[1] 0.02844397
> pbinom(q = 39, size $=100$, prob $=0.5$)
[1] 0.0176001
> qnorm($p=0.4$, mean $=10, s d=1$)
[1] 9.746653
> pnorm(q = 9.75, mean = 10, sd = 1)
[1] 0.4012937

The q family of functions

- If we are sampling from $N(\mu, \sigma)$, what is the interval within which \bar{X} will fall 95% of the time?

$$
\begin{aligned}
{[\text { qnorm }} & =0.025, \text { mean }=m u, \text { sd }=\text { sigma/sqrt }(n)), \\
\text { qnorm } & =0.975, \text { mean }=m u, \text { sd }=\text { sigma/sqrt }(n))]
\end{aligned}
$$

- Idea: the sample mean will fall below the point where pnorm is smaller than 2.5% just 2.5% of the time (same with 97.5%, mutatis mutandis)

Confidence Intervals: Motivation

- Suppose we collect a sample of observed heights, and compute the sample mean
- If we take the sample mean to be an estimate of the population mean, how far away is our estimate from the true mean?

Confidence Interval

- If we construct a 95% confidence intervals (CI) repeatedly every time we collect a sample from the population, the Cl must contain the true mean of the sample at least 95% of the time
- Note: this is not the same as saying that any particular Cl contains the true mean with probability 95\%

CI: Normal Distribution

- Suppose we know our n samples come from a normal distribution with standard deviation σ.
Then the $95 \% \mathrm{Cl}$ for μ will be
[qnorm(.025, mean $=$ mean(x), sd $=$ sigma/sqrt(n)), qnorm(.975, mean $=$ mean(x), sd $=$ sigma/sqrt(n))]
- Computationally: pretend \bar{X} is the true mean, and construct a Cl around it
- Note: the Cl becomes smaller with larger n

Cl : binomial distribution

- Use the normal approximation
- The number of heads is distributed according to

$$
\operatorname{Sum}(\mathrm{X}) \sim N(p n, n p(1-p))
$$

- The proportion of heads is distributed according to

$$
\bar{X} \sim N(p, p(1-p) / n)
$$

- The Cl becomes smaller with larger n
- If p is not known, estimate $p=0.5$
- Produces the widest Cl
- With the approximation, the Cl for the proportion p is [qnorm(0.025, mean $=$ mean (x), sd $=0.5 / \mathrm{sqrt}(n))$, qnorm(0.975, mean $=$ mean(x), sd $=0.5 / \mathrm{sqrt}(\mathrm{n})$]

Cl : binomial distribution

- The width of the Cl is qnorm(0.975, mean $=$ mean (x), $s d=$ 0.5/sqrt(n)) qnorm(0.025, mean $=$ mean (x), $s d=$ 0.5/sqrt(n))
- Half the width of the 95% is often known as the "margin of error"

CI : binomial distribution

- The margin of error for a poll with 100 observations is
$>\operatorname{qnorm}(p=0.975$, mean $=0$, sd $=0.5 / \operatorname{sqrt}(100))$ qnorm $(p=0.025$, mean $=0$, sd $=0.5 / \operatorname{sqrt}(100))$ [1] 0.1959964
- Margin of error: 10\%
- A poll with 1000 observations will have a 3% margin of error
- A poll with 10000 observations will have a 1% margin of error

The University of New Hampshire's poll was conducted by speaking to 549 New Hampshire adults over the phone from April 10-18. The margin of error of the overall survey is 4.2 percent and 6.3 percent for the 241 likely Democrats surveyed. Read the full results here. -Brendan Morrow
$>($ qnorm $(p=0.975$, mean $=0, s d=0.5 / \operatorname{sqrt}(241))-$ qnorm $(p=0.025$, mean $=0, s d=0.5 /$ sqrt(241)))/2 [1] 0.06312619

Example \#1

- Students' scores in a large class are normally distributed with $\sigma=10$. What is the confidence interval for the mean if we have a sample of 50 students, with mean 80 ?

Example \#1

- Students' scores in a large class are normally distributed with $\sigma=10$. What is the 95% confidence interval for the mean if we have a sample of 50 students, with mean 80.0 ?
$>c($ qnorm $(p=0.025$, mean $=80, s d=10 /$ sqrt(50) $)$, qnorm $(p=0.975$, mean $=80$, sd $=10 /$ sqrt(50) $))$
[1] 77.2281982 .77181

Example \#2

- We take a poll of 60 students. 82% say yes, and 18% say no. What is the 95% confidence interval for the probability of "yes"?

Example \#2

- We take a poll of 60 students. 82% say yes, and 18% say no. What is the 95% confidence interval for the probability of "yes"?

```
> c(qnorm(p = 0.025, mean = . 82, sd = . 5/sqrt(60)), qnorm(p = 0.975, mean = . 82, sd = .5/sqrt(60)))
[1] 0.6934849 0.9465151
```


Normal distribution, unknown s.d.

- Students' scores in a large class are normally distributed. What is the 95% confidence interval for the mean if we have a sample of 50 students, with mean 80 , and sample standard deviation 7 ?

$$
[\bar{x}+s / \sqrt{n} \times p t(0.025, d f=49), \bar{x}+s / \sqrt{n} \times p t(0.975, d f=49)]
$$

Example \#3

- We take a poll of 60 students. 82% say yes, and 18% say no. What is the confidence interval for the probability of "yes"?

Example \#3

- We take a poll of 60 students. 82% say yes, and 18% say no. What is the confidence interval for the probability of "yes"?

```
> c(qnorm(p = 0.05, mean = . 82, sd = . 5/sqrt(60)),
qnorm(p = 0.95, mean = .82, sd = .5/sqrt(60)))
[1] 0.7138252 0.9261748
```


95\% CI, 90\% CI, 70\% CI...

- Higher confidence \longrightarrow wider Cl
- Need a wider Cl if we want the true value to be in the Cl more often
- For approximately normal distributions: length of the Cl "arm" (half of the Cl width) for a $95 \% \mathrm{Cl}$ is $1.96 s d(\bar{X})=\frac{1.96 \sigma}{\sqrt{n}}$.
(qnorm(.975, mean $=0$, sd =1)=1.96)
- For binomial distributions: length of the $95 \% \mathrm{Cl}$
"arm" is $1.96 \frac{.5}{\sqrt{n}} \approx 1 / \sqrt{n}$

Confidence Intervals and

 Hypothesis Testing- If the null hypothesis is true, the Cl will contain the null hypothesis mean 95% of the time
- If the $95 \% \mathrm{Cl}$ does not contain the null hypothesis mean, we had something happen that doesn't happen 95% of the time
- P-value smaller than 5\%
- Can use Cls to compute p-values

Cl interpretation

- Not correct to say that the $95 \% \mathrm{Cl}$ contains the true mean with 95% probability
- The $95 \% \mathrm{Cl}$ will contain the true mean 95% of the time, if we collect multiple samples

