Probability

Polychrome marble statue depicting Tyche holding the infant Plutus in her arms, 2nd century CE, Istanbul Archaeological Museum

SML201: Introduction to Data Science, Spring 2020
Michael Guerzhoy

Quantifying uncertainty

- Events:
- The roll of a die: $\{1,2,3,4,5,6\}$
- Outcome of a coin flip: $\{\mathrm{H}, \mathrm{T}\}$
- Any of the following are events:
- | rolled 2
- I rolled an even number
- I rolled one of 3 or 5
- The coin came up heads
- If we know how dice and coins work, we can assign probabilities to events

Probability

- For a fair coin, what is the probability of heads?
- 50\%
- Two equally likely outcomes, the probability of each is 50\%
- What is the probability of rolling 1 using a fair die?
- $1 / 6$
- What is the probability of rolling an even number or a 5 using a fair die?
- $\{2,4,6,5\}$
- 4/6

What is probability?

- Long-term relative frequency (LTRF): if I toss a coin a large number of times, it will come up heads half the time
- 10000012/ 2000000 is approximately 0.5
- $P(H)=1 / 2$
- What is the probability that Trump will win in Nov 2020?
- More difficult to think in term of LTRF
- Can't repeat 20202000000 times!
- Can still elicit a subjective probability: how much would you be willing to bet that the even will happen?
- More of a philosophical issue. It's (according to some philosophers) fine to proceed with a naïve and inconsistent understanding of probability

What is Probability?

- A number between 0 and 1 that indicates how likely an event is
- If we have an event space that covers all the possible outcomes, the probability of at least one of the possible outcomes happening is 1
- P (event occurs) +P (event does not occur) $=1$

(Switch to R)

Probability Mass Function

- Probability Mass

Function (PMF):
computes the probabilities of each

- $0 \leq P \leq 1$
- $P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{k}\right)=1$

If the events are non-overlapping and at least of them has to happen

Outcome

Bernoulli Random Variable

- The outcome of a coin toss for a (possibly) biased coin
- $P(H)=p, P(T)=1-p$
- Fair coin: $\mathrm{p}=0.5$
- Weighted coin: $p \neq 0.5$

Switch to R

Binomial Random Variable

- size coin tosses, with a weighted coin with $\mathrm{P}(\mathrm{H})=\mathrm{p}$. The outcome is the number of times the coin came up heads
- For a fair coin, and two tosses

Num of tosses $=2$

Bernoulli

Outcome

Binomial

Number of Heads

Probabilities of events, again

 (large \mathbf{N})

Number of Heads
Can sum the probabilities of individual outcomes to get the probability of a range of outcomes

Cumulative Mass Function

- The CMF computes the probability that the outcome is at most x

PMF

CMF

- $\quad \operatorname{CMF}(x)=\operatorname{PMF}(0)+P M F(1)+\ldots .+P M F(x)$
- $\operatorname{CMF}(\max (x))=1$
- The CMF is always non-decreasing
- Why?
- $\operatorname{CMF}(\mathrm{x}): P(X \leq x)$

Continuous distributions

- Suppose we randomly pick a real number between 0 and 1, with each real number being equally likely
- Philosophical question: how would you even do that?
- There are so many real numbers that the probability of picking any particular one is literally zero
- But the probability of picking a number between 0.123 and 0.124 is not zero - it's 0.01
- Why?
- So we can't have a PMF (all the probabilities are zero). But we can have a Probability Density Function, which works somewhat the same way

Uniform distribution on $[a, b]$: PDF

Uniform distribution on $[a, b]$: CDF
?

Gaussian distribution: PDF

Mean: μ (mu): the most likely value of the outcome Standard deviation: σ : how spread out the outcomes are

Gaussian distribution: cdf

-?

