Predictive Modelling I

SML201: Introduction to Data Science, Spring 2020

Linear regression

Training set of housing prices (Portland, OR)

Size in feet ${ }^{\mathbf{2}} \mathbf{~} \mathbf{x}$)	Price $\mathbf{(\$)}$) in 1000's $\mathbf{(\mathbf { y })}$
$x^{(1)}=2104$	$y^{(1)}=460$
$x^{(2)}=1416$	$y^{(2)}=232$
$x^{(3)}=1534$	$y^{(2)}=315$
$x^{(4)}=852$	$y^{(2)}=178$
\ldots	\ldots

Notation:
$\mathbf{m}=$ Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

- Equation for the "best" green line: price $=a_{0}+a_{1}$ Size
- Prediction for a new size x : $\operatorname{price}(x)=a_{0}+a_{1} x$
- We take "best" to mean that on average, our predictions are not far off

Cost functions

- If the correct price is $y^{(i)}$ and we predicted $\left(a_{0}+a_{1} x^{(i)}\right)$, we are off by

$$
\left|y^{(i)}-\left(a_{o}+a_{1} x^{(i)}\right)\right| \quad \text { ("error") }
$$

- If we square this quantity, we still have a measure of how far off we are

$$
\left(y^{(i)}-\left(a_{o}+a_{1} x^{(i)}\right)\right)^{2}(\text { "squared error") }
$$

- Overall, we will be off (in terms of squared errors) by

$$
\sum_{i=1}^{m}\left(y^{(i)}-\left(a_{o}+a_{1} x^{(i)}\right)\right)^{2}
$$

Simple Linear Regression

- Find the a_{0} and a_{1} such that
$\sum_{i=1}^{m}\left(y^{(i)}-\left(a_{o}+a_{1} x^{(i)}\right)\right)^{2}$ is as small as possible
- Graphically, roughly corresponds to "draw the best line through the scatterplot"

Multiple Linear Regression

- n quantities per case
- Find $a_{0}, a_{1}, \ldots, a_{n}$ such that
$\sum_{i=1}^{m}\left(y^{(i)}-\left(a_{o}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\cdots+a_{n} x_{n}^{(i)}\right)\right)^{2}$ is small

Transforming inputs

Seems better to predict lifeExp using a new variable, $\log (g d p P e r c a p)$
(switch to R)

Categorical variables

- Quantitative variables are numbers
- Number, size, or weight of something
- If $x=19$ and $x=21$ make sense, likely $x=20$ would make sense too
- Discrete variables (e.g., counts) are still treated as quantitative
- Categorical variables indicate categories
- Country, Continent, ...
- Cannot put continents on a single scale
- Variables that could be either categorical or continuous: Likert scale response, color, ...

Predicting with categorical variables

- Suppose we are trying to predict y using one categorical variable (e.g., continent) which has k possible categories (e.g., Con $_{1}$, Con $_{2}, \ldots$, Con $_{5}$)
- $y^{(i)} \approx a_{1,0}+a_{1,1} I_{i, 1}+a_{1,2} I_{i, 2}+\cdots+a_{1, k-1} I_{i, k-1}$
- $I_{i, 1}=\left\{\begin{array}{c}1, \text { if the } i-\text { th row contains } \text { Con }_{1} \\ 0, \text { otherwise }\end{array}\right.$
- $I_{i, 2}=\left\{\begin{array}{c}1, \text { if the } i-\text { th row containsCon } \\ 2 \\ 0, \text { otherwise }\end{array}\right.$
- Note: if the i-th point is Cont_{k}, then the prediction is a_{0}
- Potentially different predictions for each continent, despite the fact that we didn't include $I_{i, k}$

(Switch to R)

Titanic Survival Case Study

- The RMS Titanic
- British passenger liner
- Collided with an iceberg during her maiden voyage
- 2224 people aboard, 710 survived
- People on board
- $1^{\text {st }}$ class, $2^{\text {nd }}$ class, $3^{\text {rd }}$ class passengers (price of ticker + social class played a role)
- Different ages, genders

Predicting Survival

- Trying to predict a categorical variable (died/ survived)
- Convert (arbitrarily) "died" to 0 and "survived" to 1
- But $a_{o}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\cdots+a_{n} x_{n}^{(i)}$ could be any real number
- Solution: compute

$$
p^{(i)}=\sigma\left(a_{o}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\cdots+a_{n} x_{n}^{(i)}\right)
$$

Logistic function

- $\sigma(y)=\frac{1}{1+\exp (-y)}$

Inputs can be in $(-\infty, \infty)$, outputs will always be in $(0,1)$

Logistic regression: prediction

$$
p^{(i)}=\sigma\left(a_{o}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\cdots+a_{n} x_{n}^{(i)}\right)
$$

- $0<p^{(i)}<1$
- Interpret $p^{(i)}$ as the probability that the variable that we are predicting (i.e., $y^{(i)}$) is 1
- For now, think of a probability is a number between 0 and 1 where 0 indicates that the event will not happen and 1 indicates that the event will happen.

(Switch to R)

Logistic regression: cost function

- For linear regression, we had

$$
\sum_{i=1}^{m}\left(y^{(i)}-\left(a_{o}+a_{1} x_{1}^{(i)}+a_{2} x_{2}^{(i)}+\cdots+a_{n} x_{n}^{(i)}\right)\right)^{2}=\sum_{i=1}^{m}\left(y^{(i)}-\operatorname{pred}\left(x^{(i)}\right)\right)^{2}
$$

- The cost is small if the predictions are close to the actual y 's
- For logistic regression:

$$
-\sum_{i}\left(y^{(i)} \log p^{(i)}+\left(1-y^{(i)}\right) \log \left(1-p^{(i)}\right)\right)
$$

- Idea: the cost is small if the p^{\prime} s are close to the y^{\prime} s
- Won't go into detail here

