
P-Values

SML201: Introduction to Data Science, Spring 2019

Michael Guerzhoy



P-Value

• Assuming the Null Hypothesis is true, the 
probability of observing a value that is as extreme 
or more extreme than what we observe

• Informally: if nothing is actually going on, how 
weird would it be to observe the data we do?
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Coin flip example

• A fair coin has a probability of 0.5 of coming up 
heads

• We observe that the coin came up heads 60 times 
out of 100

• Assuming the coin is actually fair, the probability of 
observing a value that’s as extreme or more 
extreme than 60 is
𝑃 𝑥 ≥ 60 𝑜𝑟 𝑥 ≤ 40 , 𝑥~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(100, 0.5)
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𝑥~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(100, 0.5) means that 
x is distributed according to a 
Binomial distribution, with a 
probability of 1 equal to 0.5



Coin flip example

𝑃 𝑥 ≥ 60 𝑜𝑟 𝑥 ≤ 40 = 𝑃 𝑥 ≥ 60 + 𝑃(𝑥 ≤ 40)

• Compute this using
pbinom(q = 40, size = 100, prob = 0.5) + 

(1 - pbinom(q = 59, size = 100, prob = 0.5) = 0.057

• We’d see data that’s as weird or weirder than what 
we observe more than 1 time out of 20
• Some, but not overwhelming evidence that the coin is 

not fair
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Coin flip – fake data approach

• Idea: generate fake datasets where the null 
hypothesis is true, and see how often we observe 
data that’s as weird or weirder than what we 
actually observe

• Generate 10,000 datasets where we flipped a coin 
100 times

fake.data <- rbinom(10000, size = 100, prob = 0.5)
> fake.data
55 51 42 44 44 54 49 ....

> mean((fake.data <= 40) | (fake.data >= 60))

0.05833
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Darwin’s Finches example

• Beak size information for 89 finches in each of 1977 
and 1979

• Want to know whether the difference between the 
means could be observed often if there were no 
difference between the populations in 1977 and 
1979

• Generate fake data where there is no difference in 
mean beak depth, measure the difference every 
time
• How often would be observe a difference greater or 

equal to what we observe?
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Notation

• 𝑥~𝑁(𝜇, 𝜎2) means x is normally distributed with 
mean 𝜇 and standard deviation 𝜎
• Samples from x will usually be within at most 3𝜎 of the 

mean 𝜇

• The sample mean is the mean of the individual 
measurements in the sample
• Suppose out samples from 𝑁(5, 22) are 5.1, 4.95, and 

4.9. The sample mean is ҧ𝑥 =
5.1+4.95+4.9
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• The sample mean is often denoted ҧ𝑥, and the individual 
samples 𝑥1, 𝑥2, … , 𝑥𝑛
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Distribution of the sample mean

• Suppose 𝑋~𝑁(𝜇, 𝜎2), and we take n (independent) 
measurements 𝑥1, … , 𝑥𝑛. Now 
𝑥1~𝑁 𝜇, 𝜎2 , 𝑥2~𝑁 𝜇, 𝜎2 , …

• We can also obtain the distribution of the sample 
mean. In fact, 

ത𝑋~𝑁 𝜇,
𝜎2

𝑛

• If we take n samples, ҧ𝑥 will almost always be within 
3𝜎/ 𝑛 of the mean 𝜇

• The distribution of ത𝑋 is centered around 𝜇
• Makes sense!
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Is the mean 0?

• Suppose we sample 𝑛 = 100 measurements from 
𝑁(𝜇, 22). The sample mean is 0.2. Is there evidence 
against the null hypothesis that 𝜇 = 0?

• Assuming the null hypothesis is true, ത𝑋~𝑁 0,
22

100
pnorm(q = -0.2, mean = 0, sd = 2/10) + (1 - pnorm(q = 0.2, mean = 0, sd = 
2/10)) = 0.32

• No strong evidence against the null hypothesis

9



Is the mean 0?

• Suppose we sample 𝑛 = 100 measurements from 
𝑁(𝜇, 𝜎2). The sample mean is 0.2. Is there evidence the 
null hypothesis that 𝜇 = 0?

• This time, we don’t know the 𝜎2

• But we can estimate it using 𝑠2 =
𝑥1− ҧ𝑥 2+…+ 𝑥𝑛− ҧ𝑥 2

𝑛

• Fact: ҧ𝑥/(
𝑠

𝑛
) is distributed according to 𝑡(𝑛 − 1), the 

Student t-distribution with n-1 degrees of freedom
• Looks very much like a normal distribution 𝑁 0, 1 unless n is 

relatively small (< 30)

• Assuming 𝜇 = 0!!
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Is the mean 0?

• P-value:
pt(q = -0.2/(sd(sample)/10), df = 99) + 
(1 - pt(q = 0.2/(sd(sample)/10), df = 99))
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