P-Values

SML201: Introduction to Data Science, Spring 2019

Michael Guerzhoy

P-Value

- Assuming the Null Hypothesis is true, the probability of observing a value that is as extreme or more extreme than what we observe
- Informally: if nothing is actually going on, how weird would it be to observe the data we do?

Coin flip example

- A fair coin has a probability of 0.5 of coming up heads
- We observe that the coin came up heads 60 times out of 100
- Assuming the coin is actually fair, the probability of observing a value that's as extreme or more extreme than 60 is

 $P(x \ge 60 \text{ or } x \le 40), x \sim Binomial(100, 0.5)$

 $x \sim Binomial(100, 0.5)$ means that x is distributed according to a Binomial distribution, with a probability of 1 equal to 0.5

Coin flip example

 $P(x \ge 60 \text{ or } x \le 40) = P(x \ge 60) + P(x \le 40)$

• Compute this using

pbinom(q = 40, size = 100, prob = 0.5) + (1 - pbinom(q = 59, size = 100, prob = 0.5) = 0.057

- We'd see data that's as weird or weirder than what we observe more than 1 time out of 20
 - Some, but not overwhelming evidence that the coin is not fair

Coin flip – fake data approach

- Idea: generate fake datasets where the null hypothesis is true, and see how often we observe data that's as weird or weirder than what we actually observe
- Generate 10,000 datasets where we flipped a coin 100 times

```
fake.data <- rbinom(10000, size = 100, prob = 0.5)
> fake.data
55 51 42 44 44 54 49 ....
> mean((fake.data <= 40) | (fake.data >= 60))
```

0.05833

Darwin's Finches example

- Beak size information for 89 finches in each of 1977 and 1979
- Want to know whether the difference between the means could be observed often if there were no difference between the populations in 1977 and 1979
- Generate fake data where there is no difference in mean beak depth, measure the difference every time
 - How often would be observe a difference greater or equal to what we observe?

Notation

- $x \sim N(\mu, \sigma^2)$ means x is normally distributed with mean μ and standard deviation σ
 - Samples from x will usually be within at most 3σ of the mean μ
- The *sample mean* is the mean of the individual measurements in the sample
 - Suppose out samples from $N(5, 2^2)$ are 5.1, 4.95, and 4.9. The sample mean is $\bar{x} = \frac{5.1+4.95+4.9}{2}$
 - The sample mean is often denoted \bar{x} , and the individual samples $x_1, x_2, ..., x_n$

Distribution of the sample mean

- Suppose $X \sim N(\mu, \sigma^2)$, and we take n (independent) measurements x_1, \dots, x_n . Now $x_1 \sim N(\mu, \sigma^2), x_2 \sim N(\mu, \sigma^2), \dots$
- We can also obtain the distribution of the sample mean. In fact,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- If we take n samples, \bar{x} will almost always be within $3\sigma/\sqrt{n}$ of the mean μ
- The distribution of \overline{X} is centered around μ
 - Makes sense!

Is the mean 0?

- Suppose we sample n = 100 measurements from $N(\mu, 2^2)$. The sample mean is 0.2. Is there evidence against the null hypothesis that $\mu = 0$?
- Assuming the null hypothesis is true, $\overline{X} \sim N\left(0, \frac{2^2}{100}\right)$

pnorm(q = -0.2, mean = 0, sd = 2/10) + (1 - pnorm(q = 0.2, mean = 0, sd = 2/10)) = 0.32

• No strong evidence against the null hypothesis

Is the mean 0?

- Suppose we sample n = 100 measurements from $N(\mu, \sigma^2)$. The sample mean is 0.2. Is there evidence the null hypothesis that $\mu = 0$?
- This time, we don't know the σ^2
 - But we can estimate it using $s^2 = \frac{(x_1 \bar{x})^2 + \dots + (x_n \bar{x})^2}{n}$
- Fact: $\bar{x}/(\frac{s}{\sqrt{n}})$ is distributed according to t(n-1), the Student t-distribution with n-1 degrees of freedom
 - Looks very much like a normal distribution N(0, 1)unless n is relatively small (< 30)
 - Assuming $\mu = 0!!$

Is the mean 0?

• P-value: