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• When doing predictive modeling before break, we 
assumed our data were noisy or random


• i.e. the data never exactly corresponded to our model


• Instead, there was some random error we took into 
account 
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How do we describe randomness?

• We frame probability in terms of a random process 
giving rise to an outcome 

• Roll a die → 1, 2, 3, 4, 5, or 6  

• Flip a coin → H or T 

• The probability of an outcome is the proportion of times 
the outcome would occur if we observed the random 
process an infinite number of times
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• Simple example : coin-tossing


• Try to determine the ‘bias’ of the coin (b)


• parameter estimation / Inference

model

T, T, H, T, H, T, 
T, T, T, H, T,

H, T, H, H, T, T

samples
Random Process 

(generate samples)

Inference  
(find the bias)

P(Heads)

b = ?
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R Code
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• An estimator of the probability (bias.estimates) can be 
calculated for any number of outcomes 

• For estimating the probability of Heads, this is the total 
number of heads as a proportion of the total number of 
tosses

bias.est = # of Heads/# of tosses

As the number of  
tosses increases, the 

estimate of the bias, b, 
is more accurate
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Coin tossing (probability mass func) 

• 0<=P<=1


• Probability values sum to 1

Probability Mass Function 
(PMF)

Coins with a different bias
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Bernoulli Random variable PMF 
(discrete probability distribution)

• probability of heads is p , probability of tails is 1-p


• 1 or 0 corresponds to ‘Heads’ or ‘Tails’


• When p =.5 —> fair coin toss


• when p = anything else —> weighted coin
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Binomial Random Variable

• Let’s consider N fair coin tosses. What is the probability of 
getting M “Heads” outcomes.

N = 2

PMF

Number of Heads

• Let’s simulate this! If we simulate two coin tosses many 
times, the outcomes should follow the PMF above. 

P
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Probability mass functions

Number of Heads

P

Bernoulli Binomial

Number of Heads

P

• All sum to 1


• Outcomes may be 
different


• Shapes (parameters) 
may be different
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Binomial probability mass function 
(large N)

Number of Heads

P

Probability of a value  
between 15 and 20 

• Probabilities of ranges of outcome possibilities can be 
determined by summing across outcomes


• Sum is still between 0 and 1



Cumulative Mass Function
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• Consider the probability that 
the variable is equal to or less 
than some outcome


• Plot this for all possible 
outcomes


• This is called a Cumulative 
Mass function

• The rightmost value 
always is equal to one


• Each outcome’s value 
represents the fraction of 
the data that achieve that 
outcome or a smaller 
value



What about if number of coin tosses is really 
big?

• As N grows, the number of 
possible outcomes grows


• The PMF then becomes 
approximately smooth 

• This can be described with a 
normal curve or approximated 
as a Gaussian distribution Number of Heads

P
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PMF PDF

Outcome

P

Outcome

P

• Discrete probability distribution


• probabilities are associated with 
particular values/outcomes


• probabilities sum to 1

• Continuous probability distribution


• the probability of any exact value 
is 0, the probability of a range of 
values has some finite value


• probabilities integrate to 1

Probability of a value  
between 6 and 8 
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