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e When doing predictive modeling before break, we
assumed our data were noisy or random

* |.e. the data never exactly corresponded to our model

 |nstead, there was some random error we took into
account



How do we describe randomness?

 We frame probability in terms of a random process
giving rise to an outcome

 Rolladie—1,2,3,4,5,0r6
e Flipacoin—-HorT

 The probability of an outcome is the proportion of times

the outcome would occur if we observed the random
process an infinite number of times



e Simple example : coin-tossing

* Try to determine the ‘bias’ of the coin (b)

e parameter estimation / Inference
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* An estimator of the probability (bias.estimates) can be
calculated for any number of outcomes

e For estimating the probability of Heads, this is the total
number of heads as a proportion of the total number of

tosses

bias.est = # of Heads/# of tosses
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As the number of
tosses increases, the
estimate of the bias, b,
IS more accurate



Coin tossing (probability mass func)

Probability Mass Function
(PMF) e O<=P<=1

* Probability values sum to 1
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Bernoulli Random variable PMF
(discrete probability distribution)

fkip) =p* (1 —p)' " fork e {0,1}

probability of heads is p , probability of tails is 1-p
1 or O corresponds to ‘Heads’ or ‘Talls’
When p =.5 —> fair coin toss

when p = anything else —> weighted coin
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Binomial Random Variable

e |et’s consider N fair coin tosses. What is the probability of

getting M “Heads” outcomes.
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e |et’s simulate this! If we simulate two coin tosses many
times, the outcomes should fcc))llow the PMF above.



Probability mass functions
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All sum to 1

Outcomes may be
different

Shapes (parameters)
may be different



Binomial probability mass function
(large N)

Probability of a value
between 15 and 20
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* Probabilities of ranges of outcome possibilities can be
determined by summing across outcomes

e Sum is still between 0 and 1
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Cumulative Mass Function
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Consider the probability that

the variable is equal to or less
than some outcome

Plot this for all possible
outcomes

This is called a Cumulative
Mass function
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The rightmost value
always is equal to one

Each outcome’s value
represents the fraction of
the data that achieve that
outcome or a smaller
value



What about if number of coin tosses is really
big?

e As N grows, the number of
possible outcomes grows

e The PMF then becomes
approximately smooth

e This can be described with a

normal curve or approximated

. . . . Number of Heads
as a GGaussian distribution
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PMF PDF

Probability of a value
between 6 and 8
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Discrete probability distribution * (Continuous probability distribution
probabilities are associated with * the probability of any exact value
particular values/outcomes is 0, the probability of a range of

values has some finite value

probabilities sum to 1
* probabilities integrate to 1
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